

TASCEL

TASCEL (pronounced “tassel”) is a framework to study the design of algorithms to
address the challenges associated with programming abstractions supporting
finer-grained concurrency. It uses an active message framework built on MPI. MPI
allows quick prototyping and evaluation on various platforms with minimal porting
effort. The active message framework enables the design of supporting algorithms
that are concurrent with ongoing execution (e.g., load balancing or fault recovery
concurrent with application execution). TASCEL supports various threading
modes, progress semantics, together with SPMD and non-SPMD execution, so as
to be representative of a variety of useful execution environments.

Following is some recent work on algorithms for finer-grained concurrency
abstractions using the TASCEL library.

SCHEDULING AND LOAD BALANCING
J. Lifflander, S. Krishnamoorthy, and L. Kale. "Work stealing and persistence-
based load balancers for iterative overdecomposed applications." HPDC'12.

Applications often involve iterative
execution of identical or slowly evolving
calculations. Such applications require
incremental rebalancing to improve load
balance across iterations. We evaluated
two distinct approaches to addressing this
challenge: persistence-based load
balancing and work stealing. We
developed a hierarchical persistence-
based rebalancing algorithm that performs
localized incremental rebalancing. We
also developed a retentive work stealing
algorithm optimized for iterative
applications on distributed memory
machines. Retentive work stealing
exploits persistence to incrementally
rebalance work and reduce the overhead
associated with random stealing.

FAULT TOLERANCE
W. Ma and S. Krishnamoorthy. "Data-driven fault tolerance for work stealing
computations." ICS'12.

We have designed fault tolerance mechanisms
for task parallel computations operating on
global data. We developed three recovery
schemes that present distinct trade-offs: lazy
recovery with potentially increased re-execution
cost, immediate collective recovery with
associated synchronization overheads, and
non-collective recovery enabled by additional
communication. We employ distributed-memory
work stealing to dynamically rebalance the
tasks onto the live processes. We demonstrated
that the overheads (space and time) of the fault
tolerance mechanism were low, the costs
incurred due to failures were small, and the
overheads decreased with per-process work at
scale.

Parallel efficiency (left axis) & average tasks per
worker (right) vs core count using retentive
stealing on Intrepid (TCE benchmark)

Factor of reduction in re-executed tasks
as compared to collective rollback with
respect to core count on Hopper

March 2013 PNNL-SA-XX

TRACING WORK STEALING
 J. Lifflander, S. Krishnamoorthy, and L. Kale. “Steal Tree: low-overhead tracing of work stealing schedulers.”
PLDI'13

Work stealing is inherently flexible and can tolerate variations due to faults, power, of system noise anticipated on
exascale systems. However, such a flexible approach to dealing with unbalanced distribution of work results in seemingly
irregular computation structures, complicating the study of the runtime behavior of work stealing schedulers. Typical
approaches to studying work stealing often resorted to tracking information on each individual task. Given that the number
of tasks can be orders of magnitude greater than the number of processor cores; this approach can quickly become
intractable. We have developed an approach to efficiently trace async-finish parallel programs scheduled using work
stealing with low time and space overheads. We demonstrated the broader applicability of this work, in addition to replay-
based performance analysis, through two use cases: the optimization of correctness tools that detect data races in async-
finish programs; the design of retentive work stealing algorithms for recursive parallel programs.

Space overhead in tracing help-first and work-first schedulers on OLCF Titan (AllQueens, SCF, and TCE benchmarks)

CONTINUING WORK
We continue to investigate algorithms for load balancing and resilience. We are investigating algorithms to effectively
support various threading models, memory management strategies, and exploitation of the machine hierarchy. Finer-
grained programming abstractions other than work stealing are also being evaluated.

ADDITIONAL PAPERS RELATED TO TASCEL

• J. Lifflander, P. Miller, and L. V. Kale. "Adoption protocols for fanout-optimal fault-tolerant termination detection."
PPoPP'13.

• J. Daily, S. Krishnamoorthy, and A. Kalyanaraman. "Towards scalable optimal sequence homology detection."
ParGraph'12.

• A. Panyala, D. Chavarria, and S. Krishnamoorthy. “On the use of term rewriting for performance optimization of
legacy HPC applications.” ICPP’12.

COLLABORATORS AND
CONTRIBUTORS
Pacific Northwest National Lab:
Sriram Krishnamoorthy, Daniel Chavarria,
Jeff Daily, Wenjing Ma

Ohio State University:
P. Sadayappan

University of Illinois, Urbana-Champaign:
Jonathan Lifflander, Laxmikant Kale

Washington State University:
Ananth Kalyanaraman

CONTACT: sriram@pnnl.gov
MORE INFO:
http://hpc.pnl.gov/projects/tascel

ABOUT PNNL
Interdisciplinary teams at Pacific Northwest National Laboratory
address many of America's most pressing issues in energy, the
environment and national security through advances in basic and
applied science. PNNL employs 4,500 staff, has an annual budget of
nearly $1 billion, and has been managed for the U.S. Department of
Energy by Ohio-based Battelle since the laboratory's inception in
1965. For more information, visit the PNNL News Center, or follow
PNNL on Facebook, LinkedIn and Twitter.

	TASCEL
	TASCEL (pronounced “tassel”) is a framework to study the design of algorithms to address the challenges associated with programming abstractions supporting finer-grained concurrency. It uses an active message framework built on MPI. MPI allows quick p...
	Following is some recent work on algorithms for finer-grained concurrency abstractions using the TASCEL library.
	Scheduling and Load Balancing
	J. Lifflander, S. Krishnamoorthy, and L. Kale. "Work stealing and persistence-based load balancers for iterative overdecomposed applications." HPDC'12.
	Fault Tolerance
	W. Ma and S. Krishnamoorthy. "Data-driven fault tolerance for work stealing computations." ICS'12.
	Tracing work stealing

