

Abstract
This paper describes a novel parallel algorithm that
implements a dense matrix multiplication operation with
algorithmic efficiency equivalent to that of Cannon’s
algorithm. It is suitable for clusters and scalable shared
memory systems. The current approach differs from the
other parallel matrix multiplication algorithms by the
explicit use of shared memory and remote memory access
(RMA) communication rather than message passing. The
experimental results on clusters (IBM SP, Linux-Myrinet)
and shared memory systems (SGI Altix, Cray X1)
demonstrate consistent performance advantages over
pdgemm from the ScaLAPACK/PBBLAS suite, the leading
implementation of the parallel matrix multiplication
algorithms used today. In the best case on the SGI Altix,
the new algorithm performs 20 times better than pdgemm
for a matrix size of 1000 on 128 processors. The impact of
zero-copy nonblocking RMA communications and shared
memory communication on matrix multiplication
performance on clusters are investigated.

1. Introduction
For many scientific applications, matrix multiplication is
one of the most important linear algebra operations. By
adopting a variety of techniques such as prefetching or
blocking to exploit the characteristics of the memory
hierarchy in current architectures, computer vendors have
optimized the standard serial matrix multiplication
interface in the open source Basic Linear Algebra
Subroutines (BLAS) to deliver performance as close to the
peak processor performance as possible. One of the
significant innovations in this area was the recent
discovery of a practical automatic performance tuning
scheme for linear algebra operations, such as the matrix
multiplication, in ATLAS [1] to maximize their
performance for a given processor architecture as a part of
the software installation process. Because the optimized
matrix multiplication can be so efficient, computational
scientists, when feasible, attempt to reformulate the
mathematical description of their application in terms of
matrix multiplications.
Parallel matrix multiplication has been investigated
extensively in the last two decades [2-22]. There are
different approaches for matrix-matrix multiplication: 1D-
systolic [5], 2D-systolic [5], Cannon’s algorithm [2], Fox’s

algorithm [3, 4], Berntsen’s algorithm [6, 7], the transpose
algorithm [8] and DNS algorithm [7, 14, 15]. Fox’s
algorithm was extended in PUMMA [16] and BiMMeR
[17] using different data distribution formats. Agarwal et
al. [18] developed another matrix multiplication algorithm
that overlaps communication with computation. SUMMA
[19] is closely related to Agarwal’s approach, and is used
in practice in pdgemm routine in PBLAS [20], which is
one of the fundamental building blocks of ScaLAPACK
[21]. DIMMA [22] is related to SUMMA but uses a
different pipelined communication scheme for overlapping
communication and computation.
In the earlier studies, researchers targeted their parallel
implementations for massively parallel processor (MPP)
architectures with uniprocessor computational nodes (e.g.,
Intel Touchstone Delta, Intel IPSC/860, nCUBE/2) on
which message passing was the highest-performance and
typically the only communication protocol available. In
particular, these algorithms relied on optimized broadcasts
or send-receive operations. With the emergence of portable
message-passing interfaces (PVM, and later MPI), the
parallel matrix multiplication algorithms were
implemented in a portable manner, distributed widely and
used in applications.
The current architectures differ in several key aspects from
the earlier MPP systems. Regardless of the processor
architecture (e.g., commodity vector, or commodity RISC,
EPIC, CISC microprocessors) to improve the cost-
effectiveness of the overall system, both the high-end
commercial designs (IBM SP, NEC SX-6, Hitachi SR-
8000, Cray X1, SGI Altix) and the commodity systems
(Beowulf clusters) employ as a building block Symmetric
Multi-Processor (SMP) nodes connected with an
interconnect network. All of these architectures have the
hardware support for load/store communication within the
underlying SMP nodes, and some extend the scope of that
protocol to the entire machine (Cray X1, SGI Altix).
Although the high-performance implementations of
message passing can exploit shared memory internally, the
performance is less competitive than direct loads and
stores. Multiple studies have attempted to exploit the
OpenMP shared memory programming model in parallel
matrix multiplication, either as a standalone approach on
scalable shared memory systems [23, 24] or as a hybrid
OpenMP-MPI approach [25, 26] on SMP clusters. Overall,

SRUMMA: A Matrix Multiplication Algorithm Suitable for Clusters and
Scalable Shared Memory Systems
Manojkumar Krishnan and Jarek Nieplocha

 Computational Sciences & Mathematics
 Pacific Northwest National Laboratory

{Manojkumar.Krishnan, Jarek.Nieplocha}@pnl.gov

the reported experiences in comparison to the pure MPI
implementations were not encouraging.
The conceptual architectural model for which our
algorithm was designed is a cluster of multiprocessor
nodes connected with a network that supports remote
memory access communication (put/get model) between
the nodes. Remote memory access (RMA) is a simple
communication model and, on modern systems, is often be
the fastest communication protocol available, especially
when implemented in hardware as zero-copy RMA
write/read operations (e.g., Infiniband, Giganet, and
Myrinet). RMA is often used to implement the point-to-
point MPI send/receive calls [27, 28]. To address the
historically growing gap between the processor and
network speed, our implementation relies on the
availability of the nonblocking mode of RMA operation as
the primary latency hiding mechanism (through
overlapping communication with computations) [29]. In
addition, each cluster node is assumed to provide efficient
load/store operations that allow direct access to the data. In
other words, a node of the cluster represents a shared
memory communication domain. Our algorithm is
explicitly aware of the task mapping to shared memory
domains i.e., it is written to use shared memory to access
parts of the matrix held between processors on the same
SMP node, and nonblocking RMA operations to access
parts of the matrix outside of the local shared memory
domain (i.e., RMA domain). Note that the shared memory
domain might not necessarily match the underlying SMP
node configuration used as a hardware building block in
many systems. For example, the entire 128-processor SGI
Altix system available to us was used as a single shared
memory domain, even though underneath it is
implemented based on a 2-processor SMP configuration
with processors sharing the memory in the module
(“brick”) and accessing the remainder of system memory
through an interconnect network (“NUMAlink”).
Implementing matrix multiplication directly on top of
shared and remote memory access communication helps us
optimize the algorithm with a finer level of control over
data movement and hence achieve better performance. One
difference between the OpenMP studies and the current
approach is that instead of using a compiler-supported
high-level shared memory model, we simply place the
distributed matrices in shared memory and exercise full
control over the data movement either through the use of
explicit loads and stores or optimized block memory
copies. In the comparison to the standard matrix
multiplication interfaces pdgemm in ScaLAPACK [21]
and SUMMA [19], the current algorithm achieved
consistent and very competitive performance on four
architectures used in the study. These were clusters based
on 16-way (IBM SP) and 2-way (Linux/Xeon) nodes, and
the shared memory NUMA SGI Altix architecture as well
as the Cray X1 with its partitioned shared memory

architecture. In the experimental comparisons, the same
optimized implementation of the serial matrix
multiplication was used for all parallel matrix
multiplication algorithms. The described algorithm is more
general, memory efficient, and demonstrated excellent
performance and scalability on all four platforms. In
addition to describing the new algorithm, this paper
demonstrates that the efficient implementation of the
communication protocols plays a key role in the
performance of matrix multiplication. The zero-copy and
nonblocking characteristics of the communication
protocols were found to be of critical importance for the
performance of the matrix multiplication algorithm on
clusters. In contrast to the OpenMP implementation of
matrix multiplication on shared memory systems [23, 24],
the direct use of shared memory produced excellent
performance as compared to MPI (used in
ScaLAPACK/PBBLAS pdgemm and SUMMA). For
example, for a matrix size 2000x2000 on 128 processors of
the Cray X1, ScaLAPACK (Cray optimized -lsci)
produced 128 GFLOP/s, where as our algorithm performed
at 922 GFLOP/s. In the best case on the SGI Altix, the new
algorithm performs 20 times better than ScaLAPACK
pdgemm for a matrix size of 1000x1000 on 128
processors.
The paper is organized as follows. The next section
describes our algorithm and analyzes its efficiency model.
In Section 3, practical implementations of the algorithm
are presented for clusters and shared memory systems.
Section 4 describes and analyzes performance results for
the new algorithm and ScaLAPACK matrix multiplication
as well as results for the communication operations used in
the implementation. The impact of zero-copy and
nonblocking communication on the matrix multiplication
performance is demonstrated. Finally, summary and
conclusions are given in Section 5.

2. New Algorithm – SRUMMA
At the high level, our algorithm, called SRUMMA (Shared
and Remote-memory based Universal Matrix
Multiplication Algorithm), follows the serial block-based
matrix multiplication (see Figure 1) by assuming the
regular block distribution of the matrices A, B, and C and
adopting the “owner computes” rule with respect to blocks
of the matrix C. Each process accesses the appropriate
blocks of the matrices A and B to multiply them together
with the result stored in the locally owned part of matrix C.
The specific protocol used to access nonlocal blocks varies
depending on whether they are located in the same or other
shared memory domain as the current processor. In
principle, the overall sequence of block matrix
multiplications can be similar to that in Cannon’s
algorithm. However, unlike Cannon’s algorithm, where
skewed blocks of matrix A and B are shifted using
message-passing to the logically neighboring processors,

our approach fetches these blocks independently, as
needed, without requiring any coordination with the
processors that own the matrix blocks. This is possible
thanks to the use of RMA and shared memory access
protocols. In addition, the specific sequence in which the
block matrix multiplications are executed is determined
dynamically at run time to more efficiently schedule and
overlap communication with computations. The absence of
sender-receiver synchronization/coordination (such in
Cannon’s algorithm) based on message passing makes the
overall algorithm more asynchronous and thus more suited
for the execution environments where the computational
threads share a CPU with other processes and system
daemons (e.g., on commodity clusters). This is because
synchronization amplifies performance degradations due to
the nonexclusive use of the processor by the application.

2.1 Baseline Efficiency Model
Consider a matrix multiplication operation C = AB, where
the order of matrices A, B, and C is m x k, k x n, and m x n,
respectively. Let us denote:

tw - data transfer time per element
 ts - latency (or startup cost)
 p x q - process grid in two-dimensional fashion
 P - number of processors
and assume (as in [7, 30]) that the cost of the addition and
multiplication floating point operation takes unit time (line
5 in Figure 1). For our analysis, we assume a two-
dimensional matrix distributed as shown in Figure 2. Each
process owns a block of the A, B and C matrices of

size
q
n

p
m
× ,

q
k

p
m
× and

q
n

p
k
× , respectively. The

sequential time Tseq of the matrix multiplication algorithm
is N3 (say, m=n=k=N). The parallel time Tpar_rma is the sum
of computation time (Tcomp) and the time to get the blocks
of matrices A and B (Tcomm).
Tcomm = (time to get row of matrix A blocks) + (time to get
column of B blocks) = Trow_comm + Tcolumn_comm
Using RMA protocols (e.g. get, put), each process gets q
blocks of matrix A and p blocks of matrix B of

size ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
q
k

p
m and ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
q
n

p
k , respectively.

Trow_comm = {data transfer time of message size mk/pq} +
{latency/start-up cost}

Trow_comm = qtt
pq
mk

sw ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
; Tcolumn_comm = ptt

pq
nk

sw ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

Tpar_rma =
P

mnk
 + qtt

pq
mk

sw ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
 + ptt

pq
kn

sw ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

For simplicity let us assume, m=n=k=N and p=q= P ,
then the above equation becomes,

Tpar_rma = PstwtP
N

P
N 2

2
2

3
++ (1)

 = O ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

P
N 3

+ O ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

P
N 2

+ O ()P (2)

For a network with sufficient bandwidth, ts can be
neglected as it is relatively small when compared to the
total communication time. Therefore, the parallel
efficiency (η) is

η = Speedup/P ≈

wt
N

P21

1

+

 =

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

N
PO1

1

The isoefficiency function of this algorithm is O (P3/2),
which is the same as Cannon’s algorithm [7, 19].

Overlapping communication with computations: When
non-blocking RMA is used to transfer matrix blocks, the
communication can be overlapped with computation, as
shown in Figure 3.

The degree of overlapping, ω, is defined as: ω= ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

comm

comp

T
T

1

If ω < 0, then ω = 0. Introducing ω in (1),

Tpar_rma = ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+ PP

P
N

P
N δβωα 23

2 (3)

When Tcomp >= Tcomm (i.e., 100% overlap), equation (3)

reduces to, Tpar_rma = Pt
P

N
s2

3

+ = O ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

P
N 3

 + O ()P .

1: for i=0 to s-1 {
2: for j=0 to s-1 {
3: Initialize all elements of Cij to zero (optional)
4: for k=0 to s-1 {
5: Cij = Cij + Aik×Bkj
6: }
7: }
8: }

Figure 1: Block matrix multiplication for matrices
N×N and block size N/s × N/s

= x

Figure 2: Matrix distribution example. In a 4 x 4 process grid,
process P00 needs blocks of matrix A from P00, P01, P02, and P03,
and blocks of matrix B from P00, P10, P20, and P30.

P00 P03 P02 P01

P10 P13 P12 P11

P20 P23 P22 P21

P30 P33 P32 P31

3 Implementation Considerations
To derive an efficient implementation of the matrix
multiplication algorithm, we rely on the following
assumptions: 1) the ability to overlap computation with the
network communication on clusters is essential for latency
hiding; 2) hardware-supported shared memory is the
fastest protocol available on the shared memory
architectures and SMP nodes of the current clusters ; 3) to
avoid dependencies on the OpenMP interfaces and
compiler technology, we need as much control over shared
memory communication as possible; and 4) use of RMA is
preferable to the send-receive model, as it makes the
implementation simpler and potentially more efficient due
to reduced synchronization. Based on these assumptions,
we designed two instances of the matrix multiplication
algorithm. We will first describe algorithm implementation
for clusters composed of nodes with shared memory
domains; then we will discuss special considerations for
the scalable shared memory systems.

3.1 Cluster Version
For each processor p and corresponding matrix block Cij
held on that processor,
1. Build a list of tasks (where a task computes each of the

AikBkj products.) corresponding to the block matrix

multiplications in: ∑
=

=
pn

k
kjikij BAC

1
 (4)

2. Reorder the task list according to the communication
domains for processors at which the Aik, Bkj are stored.
The tasks that involve matrix blocks stored in the
shared memory domain of the current processor are
moved to the beginning of the list. This is done to
ensure overlap of computations and nonblocking
communication required to bring matrix blocks from
other cluster nodes to compute the other tasks on the
list. Since the tasks at the beginning of the list use data
accessible directly, we do not have to wait to start the
pipeline. Another consideration in sorting the task list
is to optimize the locality reference so that the currently
held Aik matrix block is used in consecutive matrix
products before its copy is discarded and the
corresponding buffer reused.

3. For each task on the list,
• Issue a nonblocking get operation for the matrix block

involved in the next task on the list if it is not on the
same node.

• Wait for the nonblocking get operation bringing Aik
and/or Bkj needed to execute the current task.

• Call serial matrix multiplication dgemm that computes
AikBkj and adds the result to the Cij block.

4. There are two temporary buffers (B1 and B2) used
internally. One buffer is used for communication and
the other buffer is used for computation as shown in
Figure 3. At a given step, a processor receives data in
B2 while computing the data in B1. In the next step,

data received in B2 is used for computation and B1 is
used for receiving data. Overlapping communication
with computation is achieved in all steps, except first.

As a further refinement of the algorithm, as shown in
Figure 4, the “diagonal shift” algorithm is used in Step 2 to
sort the task list so that the communication pattern reduces
the communication contention on clusters. We verified
experimentally on the IBM SP that indeed this improves
performance. For example, consider matrix A that is
distributed on a 4 x 4 processor grid, on a 4-way SMP
cluster. As shown in Figures 4a and 4b, node 1 has
processors P00, P10, P20, and P30; node 2 has P01, P11, P21,
and P31; etc.,. To compute its locally owned matrix C, a
processor needs the corresponding rows and columns of
matrix A and B respectively, as shown in Figure 3. i.e.,
processor P00 needs blocks of matrix A from P00, P01, P02,
and P03, and blocks of matrix B from P00, P10, P20, and P30.
If the diagonal shift algorithm is not used, processors P00,
P10, P20, and P30 get a block from P01, P11, P21, and P31,

respectively in the first step. Thus all the 4 processors are
trying to share the bandwidth between node1 and node2. If
the diagonal shift algorithm is used instead, then
processors P00, P10, P20, and P30 get a block from P00
(node1), P11 (node2), P22 (node3), and P33 (node4),
respectively in the first step, thus reducing the contention.
This algorithm performs better if there are more processors
per node (e.g., 16-way IBM SP). Figure 4c represents the
pattern of getting blocks by processors in node 1.

A B C

Computation

Communication

Figure 3. Using two sets of buffers to overlap
communication and computation in matrix

P00 P03 P02 P01

P10 P13 P12 P11

P20 P23 P22 P21

P30 P33 P32 P31

(a) (b)

(c)

P00 P03 P02 P01

P10 P13 P12 P11

P20 P23 P22 P21

P30 P33 P32 P31

Figure 4: Pattern of getting blocks on a 4-way SMP cluster to
reduce communication contention.

3.2 Shared Memory Version
The cluster algorithm running on a system with one shared
memory communication domain reduces to the shared
memory version. However, this algorithm has two flavors;
the one used depends on whether remote shared memory is
locally cacheable. For example, the Cray X1 with its
partitioned shared memory supports load/store operations
for its entire memory. The system is a cluster with four
multi-stream processors (MSPs) on each node. A virtual
memory address includes node number and address within
that node. The memory on other nodes can be accessed
with the load/store operations; however, it cannot be
cached due to the memory coherency protocol [31].
Because the performance of the serial matrix
multiplication depends critically on the effective cache
utilization, on the Cray X1 we copy nonlocal blocks of
matrices A and B to a local buffer before calling the serial
matrix multiplication.
On the other hand, the SGI Altix is a shared memory
system where shared memory data can be cached.
Therefore, the matrix multiplication does not require
explicit memory copies. Instead, the appropriate blocks of
matrix A and B are passed directly to the serial matrix
multiplication subroutine. A comparison between these
two schemes for C = ATB and C = AB on these two
platforms is illustrated in Figure 5. The SGI Altix uses 1.5-
GHz Intel Itanium-2 processors rated at 6 GFLOP/s
whereas the Cray X1 processor is rated at 12.8 GFLOP/s.
As expected, the copy-based version is faster than the
direct access version on the Cray X1 and somewhat slower
on the SGI Altix (the gap between these two algorithms
actually increases for larger processor counts on the Altix).

3.3 Portable Implementation
Our current implementation of the matrix multiplication
algorithm relies on the portable Aggregate Remote
Memory Copy Interface (ARMCI) library [32] and, in
particular, the memory allocation interface
ARMCI_Malloc, nonblocking get operations, and the
cluster configuration query interfaces [33]. The cluster
configuration information provided by ARMCI enables the
application at run time to determine which processors can
communicate through shared memory. ARMCI_Malloc is
a collective memory allocator that allocates shared
memory on clusters or shared memory architectures (e.g.,
SGI Altix). This is accomplished using OS calls such as
the System V shmget/shmat, with the exception of the
Cray X1, where even memory allocated by malloc can be
globally shared. ARMCI_Malloc returns pointers to the
memory allocated for all the processors. Using the pointer
values and cluster locality information, processors in the
same shared memory domain can access the allocated
memory directly through load/store operations or through
the ARMCI communication calls. For example, the
ARMCI get/put operations are implemented as a memory
copy within the SMP node of a cluster. Thanks to the

ARMCI compatibility with MPI, the current
implementation of the matrix multiplication routine could
be used in normal MPI-based programs, provided that the
distributed arrays are allocated using ARMCI_Malloc
rather than, for example, the standard malloc call. This is
not a significant restriction because in most applications,
distributed arrays are created collectively anyway. To
achieve maximum performance in the RMA
communication on Linux clusters with Myrinet,
ARMCI_Malloc internally attempts to register the memory
used for the matrices with the Myrinet GM network
interface driver. If registration is successful, it enables the
direct use of efficient zero-copy communication through
the GM Myrinet protocols. Otherwise, either copy-based
or on-the-fly dynamic memory registration protocols are
used [34, 35]. MPICH-GM registers user communication
buffers to enable zero-copy data transfers as well; these
registrations are transparent to the user. The zero-copy
communication enables the network interface card (NIC)
to complete the data transfers without involving the host
CPU. This is important for ensuring progress in the
nonblocking communication while the host CPU is
involved in computations.

4. Experimental Study
To validate the effectiveness of the proposed algorithm, we
ran numerical experiments on four platforms:

• Linux cluster based on dual 2.4-GHz Intel Xeon
nodes and Myrinet-2000 network

• IBM SP based on 16-way 375-MHz Power-3
CPUs and colony switch at the National Energy
Research Scientific Computing Center

• Cray X1 massively parallel vector supercomputer
at Oak Ridge National Laboratory

• SGI Altix 3000, shared-memory NUMA system
with 128 1.5-GHz Intel Itanium-2 CPUs at Pacific
Northwest National Laboratory.

For the comparison, we used the pdgemm routine from
ScaLAPACK Version 1.7, and SUMMA. However, to

0

20

40

60

80

100

120

140

160

Al tix X1

ATB copy ATB di r ect AB copy AB di r ect

Figure 5: Performance of matrix multiplication
(N=2000) on 16 processors using direct access and copy
on the Cray X1 and the SGI Altix

save space we are reporting pdgemm results only, as it is
the most commonly used parallel linear algebra library and
the performance comparisons were similarly favorable
with SUMMA. Moreover, SUMMA is used in practice in
ScaLAPACK/PBLAS suite [20]. In all three parallel
algorithms, the same dgemm (double precision serial
matrix multiplication) routines from vendor optimized
math library (-lsci for the X1, -lessl for the SP, -lscs for
Altix, -lmkl for Xeon) were used. Optimum block sizes
were chosen empirically for all matrix sizes and processor
counts.
Figure 10 presents the performance differences for
SRUMMA and ScaLAPACK pdgemm for square matrices;
matrix ranks range from 600 to 12000 on all four
platforms. In these tests, the matrices were not transposed.
As shown in Figure 10, the new algorithm outperforms
pdgemm and scales better, with the most profound gains
noted on the two shared memory systems, Cray X1 and
SGI Altix. This is due to the benefit shared memory
communication offers on these architectures over message
passing. As a best case on Altix, SRUMMA performs 20
times better than ScaLAPACK pdgemm for a matrix size
of 1000 on 128 processors. However, memory bandwidth
is a bottleneck for very large problem sizes (for e.g.,
problem size of 12000 on Altix) on shared memory
systems. For the matrix size of 12000 on 128 CPUs we
observe reduced scaling, most likely due to the fact that the
larger test case increases the probability of the system
daemons preempt the matrix multiplication code when all
the processors on the Altix system were used.
Our ScaLAPACK results are consistent with, and even
better than, the results reported earlier by other researchers
[36]. For example, [36] reports 48 GFLOP/s on Altix and
112 GFLOP/s on Cray X1 to multiply matrices of size
8000x8000 using ScaLAPACK pdgemm. Our pdgemm
runs gave even better performance; 96 GFLOP/s on Altix
and 243 GFLOP/s on the Cray X1. This difference is due
to the faster processor and memory configuration on Altix
(we used Altix with 1.5 Ghz Itanium-2 CPUs, instead of
the 1.3 GHz model in [36]), and recent improvements in
the vendor math libraries.
The new algorithm performs better than ScaLAPACK on
clusters as well. For example on the Linux cluster, it is
faster by a factor of two for larger problem sizes, and by
20% to 40% in most of the cases. In most of the cases
(especially on Linux), we were able to overlap 90% of the
communication with computation.
Section 4.1 describes the impact of communication
protocols to achieve this high degree of overlap. Since
shared memory is the fastest communication protocol
available on shared memory systems, it is not surprising
that our algorithm outperforms ScaLAPACK algorithm
implemented on top of message passing. However, to
understand the performance differences between the two
versions of the matrix multiplication algorithm on clusters

we performed several tests to measure the role of the
underlying communication protocols.

4.1 Impact of communication protocols
First, we investigated the performance of MPI send/receive
operations and the ARMCI get operation (we did not
include SGI Altix in this study due to the use of direct
access protocol in our matrix multiplication). Figures 6 and
8 shows that performance of these RMA protocols is better
than MPI, with the exception of the short message range
(in principle, the get operation involves request and reply
which understandably leads to a higher latency). The MPI
timings correspond to half of the round-trip message
exchange. In addition, the high cost of AIX interrupt
processing in LAPI makes the latency of this protocol
higher than in MPI send-receive operations that uses
polling. We also measured performance of MPI_Get (MPI-
2) on the IBM SP and found its performance to be
relatively low as compared to the other two protocols.
Unlike the message-passing implementation of the matrix
multiplication in ScaLAPACK pdgemm, our algorithm is
using nonblocking RMA, which offers a potential for
overlapping communication with computations [37]. We

0
10
20
30
40
50
60
70
80
90

100

8 16 32 64 128 256 360
Matrix block Size

%
 o

ve
rla

p
ARMCI-GM

ARMCI-SP

MPI-GM

MPI-SP

Figure 7: Potential degree of communication overlap on
IBM SP and Linux cluster as a function of message-size

0

2000

4000

6000

8000

10000

12000

14000

16000

1 10 100 1000 10000 100000 1000000 10000000

MPI send-receive

ARMCI_Get

Figure 6: Bandwidth comparison on Cray X1

measured this potential for ARMCI and MPI on our two
cluster platforms (see Figure 7). In comparison to MPI
non-blocking, ARMCI non-blocking get offers almost 99%
overlap for medium- and larger-sized messages. Similarly
to other studies [38, 39], we found the potential degree of
overlapping MPI communication with computations to be
less favorable: it sharply decreases after a certain message
size (16Kb) as MPI switches to the Rendezvous protocol
[29]. Therefore, the use of nonblocking protocols in
SRUMMA is expected to be beneficial when the problem
size and processor count is increased, due to a high degree
of overlapping of communication with computations.
Our next communication-related test attempted to evaluate
to what degree zero-copy RMA communication affects the
performance of matrix multiplication. This communication
approach allows the remote CPU to work on its own
computations rather than be interrupted and involved in
data copying on behalf of another processor. On the
Myrinet with GM 1.X, ARMCI is implemented using the
GM put operation and pthreads [35]. Unlike Myrinet GM,
IBM LAPI is not a zero-copy protocol, thus we could only
use Myrinet to investigate the role zero-copy protocols
play in performance of the matrix multiplication. The new
matrix multiplication algorithm was tested when enabling
and disabling the zero-copy implementation [29] of the
ARMCI get operation. Figure 9 shows that zero-copy
protocol is very important for performance of the new
algorithm. This test is performed on the Linux cluster with
Myrinet, using:

• blocking and non-blocking communications, and
• zero-copy protocol disabled and enabled.

These results show that the performance benefit of using
nonblocking communications is amplified when the zero-
copy protocol is enabled. This is because, the remote host
CPU cycles are not taken away when overlapping
communication with computation since the NICs are able
to transfer the data between the user buffers across the
network. We were able to overlap more than 90% of the
communication with computation, thus the degree of
overlapping (ω) is less than 10%. Therefore, Equation 3
reduces to:

Tpar_rma = PtPt
P

N
P

N
sw +⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

23
)1.0(= ζ+

P
N 3

where ζ << (N3/P) for medium/larger problem sizes.
ARMCI_Get is implemented as a trivial wrapper to
LAPI_Get on the IBM SP. Because neither LAPI nor IBM
MPI is a zero-copy protocol, the remote host CPU
involvement is required to copy the data from the user
buffers to DMA buffers before NIC can transfer it.
Therefore, the performance is not optimal. However, the
IBM SP is based on 16-way nodes, thus our algorithm ends
up using shared memory for a larger fraction of
interprocessor communication than on the Linux cluster.
This partly compensates for the lack of zero-copy
communication on the IBM SP and makes the new matrix

multiplication algorithm work faster overall than
ScaLAPACK. Based on the Myrinet experiments, we
would expect our matrix multiplication to benefit from
zero-copy protocols in LAPI, which IBM has already
introduced in KLAPI, a kernel version of this library.

0

10

20

30

40

50

60

70

80

P=1
6;N

=1
00

0

P=1
6;N

=2
00

0

P=1
6;N

=4
00

0

P=3
2;N

=1
00

0

P=3
2;N

=2
00

0

P=3
2;N

=4
00

0

Processor count / matrix size

G
flo

ps

zero copy disabled + blocking
zero copy disabled + nonblocking
zero copy enabled + blocking
zero copy enabled + nonblocking

Figure 9: Performance of the matrix multiplication on
Linux Cluster (Myrinet Interconnect) with enabled or
disabled zero-copy protocol

0

50

100

150

200

250

300

350

400

450

1 10 100 1000 10000 100000 1000000 10000000

Message Size [bytes]

B
an

dw
id

th
 [M

B
/s

]

MPI_Get

MPI send-receive

ARMCI_Get

0

50

100

150

200

250

300

1 10 100 1000 10000 100000 1000000 1000000
0

message size [bytes]

 b
an

dw
id

th
 [M

B
/s

]
MPI send-receive

ARMCI_Get

ARMCI_Get (non-zero copy)

Figure 8: Performance of MPI and ARMCI_Get on
IBM SP (top) and Myrinet (bottom)

Ne w Algorithm (Linux Cluste r)

0

50

100

150

200

250

300

350

0 32 64 96 128

pr oce s s o r s

G
FL

O
P/

s

600

1000

2000

4000

8000

12000

S ca L A P A C K (L in u x C lu ste r)

0

50

100

150

200

250

300

350

0 32 64 96 128
p r o ce s s o r s

G
FL

O
P/

s

600

1000

2000

4000

8000

12000

Ne w Algorithm (IBM S P)

0

50

100

150

200

250

0 64 128 192 256

p r o ce s s o r s

G
FL

O
P/

s

600

1000

2000

4000

8000

12000

S ca LAP ACK (IBM S P)

0

50

100

150

200

250

0 64 128 192 256

p r o ce s s o r s

G
FL

O
P/

s

600

1000

2000

4000

8000

12000

New Algorithm (Cray X1)

0

200

400

600

800

1000

1200

1400

0 32 64 96 128
proce ss ors

G
FL

O
P/

s

600

1000

2000

4000

8000

12000

ScaLAPACK (Cray X1)

0

200

400

600

800

1000

1200

1400

0 32 64 96 128
processors

G
FL

O
P/

s

600
1000

2000
4000
8000

12000

N e w A lg o ri th m (S G I A ltix)

0

50

100

150

200

250

300

350

400

0 32 64 96 128
p r o ce s s o r s

G
FL

O
P/

s

600

1000

2000

4000

8000

12000

S c a LAP ACK (S GI Altix)

0

50

100

150

200

250

300

350

400

0 32 64 96 128
proc e s s ors

G
FL

O
P/

s

600

1000

2000

4000

8000

12000

Figure 10: Performance of the new algorithm with ScaLAPACK pdgemm on different platforms

4.2 Transpose and Rectangular Matrices
We also measured the performance of matrix
multiplication using SRUMMA and
ScaLAPACK/PBBLAS pdgemm for transposed and
rectangular matrices. Three variants were considered: C =
ATB (i.e., A is transposed, B is not), C = ABT and C =
ATBT. For rectangular matrices operation C = AB, where
the order of matrices A, B, and C is m x k, k x n, and m x n,
respectively. Several tests involving various sizes of
matrices ranging in size from 600 to 8000 and of different
shapes were conducted. Due to the space limitations, we
cannot demonstrate all the performance result. However,
the best cases are presented in Table 1 included in the next
section. SRUMMA consistently outperformed pdgemm on
clusters and shared memory systems in most of the cases.
The observed performance is similar square and non-
transposed cases. SRUMMA scaled well when the number
of processors and/or the problem size was increased, thus
proving the algorithm is cost-optimal. In all the cases,
SRUMMA took advantage of the shared memory
communication (in the case of shared memory systems),
and zero-copy and non-blocking RMA protocols (in the
case of the cluster), to achieve high performance.
However, performance degrades for smaller matrices on
larger processor counts. This is because, for small matrix
sizes and larger processor counts, the potential for
overlapping is limited. Moreover, for short message
ranges, the get operation involves request and reply, which
leads to a higher latency.

Matrix Size CPUs Case
Platform

SRUMMA
(GFLOP/s)

pdgemm
(GFLOP/s)

4000x4000 128 C=AB
(Altix)

384 33.9

2000x2000 128 C=AB
(Cray X1)

922 128

12000x
12000 128 C=AB

(Linux)
323.2 138.6

8000x8000 256 C=AB
(IBM SP3)

223 186

600x600 128 C=ATBT

(Linux)
16.64 6.4

16000x
16000 128 C=ATB

(IBM SP3)
108.9 77.4

4000x4000 128 C=ATBT

(Altix)
369 24.3

m=4000;
n=4000;
k=1000

Rectangula
r

128 160 107.5

m=1000;
n=1000;
k=2000

rectangular

64 288 17.28

Table 1: SRUMMA best cases.

5. Summary and Conclusions
This paper described a novel parallel algorithm for a dense
matrix multiplication operation with algorithmic efficiency
equivalent to that of Cannon’s algorithm. Unlike the other
leading parallel algorithms based on message passing, the
current approach exploits shared memory and nonblocking
remote memory access protocols on clusters and shared
memory systems. Overall, the algorithm achieved
consistent and substantial performance gains over the
parallel matrix multiplication in the
ScaLAPACK/PBBLAS suite. Some of its best cases are
presented in Table 1. The experimental results on clusters
indicate that the nonblocking zero-copy RMA
communication plays an important role in the ability to
overlap communication with computations and improve
efficiency of the algorithm. On shared memory systems
cache and direct access are instrumental in achieving high
levels of performance, even though on the Cray X1 an
additional memory copy might be involved.

Acknowledgments
This work was performed under the auspices of the U.S.
Department of Energy (DOE) at Pacific Northwest
National Laboratory (PNNL) operated for DOE by
Battelle. This work was supported by the Center for
Programming Models for Scalable Parallel Computing
sponsored by the MICS/ASCR program in the DOE Office
of Science and Environmental Molecular Science
Laboratory (EMSL) at PNNL.

References
1. R. Whaley and J. Dongarra, “Automatically Tuned
Linear Algebra Software (ATLAS)”, Supercomputing’89.
2. L. E. Cannon, “A cellular computer to implement the
Kalman Filter Algorithm”, Ph.D. dissertation, Montana
State University, 1969.
3. G. C. Fox, S. W. Otto, and A. J. G. Hey, “Matrix
algorithms on a hypercube I: Matrix multiplication”,
Parallel Computing, vol. 4, pp. 17-31. 1987.
4. G. C. Fox, M. Johnson, G. Lyzenga, S. Otto, J.
Salmon, and D. Walker, Solving Problems on Concurrent
Processors. vol. 1, Prentice Hall, 1988.
5. G.H. Golub and C.H Van Loan. Matrix Computations.
Johns Hopkins University Press, 1989.
6. J. Berntsen, Communication efficient matrix
multiplication on hypercubes, Parallel Computing, vol. 12,
pp. 335-342, 1989.
7. A. Gupta and V. Kumar, “Scalability of Parallel
Algorithms for Matrix Multiplication”, Proc. ICPP, 1993
8. C. Lin and L.Snyder, “A matrix product algorithm and
its comparative performance on hypercubes”, in Scalable
High Performance Computing Conference, 1992,
9. Q. Luo and J. B. Drake, "A Scalable Parallel
Strassen's Matrix Multiply Algorithm for Distributed
Memory Computers", http://citeseer.nj.nec.com/517382.html

(Altix)

(Linux)

10. S. Huss-Lederman, E. M. Jacobson, and A. Tsao,
"Comparison of Scalable Parallel Matrix Multiplication
Libraries," in Scalable Parallel Libraries Conference,
IEEE Computer Society Press, 1994, pp. 142-149.
11. C. T. Ho, S. L. Johnsson and A. Edelman, “Matrix
multiplication on hypercubes using full bandwidth and
constant storage”, in Proceeding of the Sixth Distributed
Memory Computing Conference. 1991, pp. 447-451.
12. H. Gupta and P. Sadayappan, “Communication
Efficient Matrix Multiplication on Hypercubes”, in Proc
Sixth ACM SPAA, 1994.
13. J. Li, A. Skjellum, and R. D. Falgout, “A Poly-
Algorithm for Parallel Dense Matrix Multiplication on
Two-Dimensional Process Grid Topologies,”
Concurrency, Practice and Experience, vol. 9(5), 1997.
14. E. Dekel, D. Nassimi, and S. Sahni, “Parallel matrix
and graph algorithms”, SIAM Journal on Computing, vol.
10, pp. 657-673, 1981.
15. S. Ranka and S. Sahni. Hypercube Algorithms for
Image Processing and Pattern Recognition. Springer-
Verlag, New York, NY, 1990.
16. J. Choi, J. Dongarra, and D. W. Walker, “PUMMA:
Parallel Universal Matrix Multiplication Algorithms on
distributed memory concurrent computers,” Concurrency:
Practice and Experience, vol. 6(7), pp. 543-570, 1994.
17. S. Huss-Lederman, E. Jacobson, A. Tsao, and G.
Zhang, “Matrix Multiplication on the Intel Touchstone
DELTA”, Concurrency: Practice and Experience, vol. 6
(7) pp. 571-594. Oct 1994.
18. R. C. Agarwal, F. Gustavson, and M. Zubair, “A high
performance matrix multiplication algorithm on a
distributed memory parallel computer using overlapped
communication,” IBM J. of Research and Development,
vol. 38 (6), 1994.
19. R. van de Geijn, R. and J. Watts, “SUMMA: Scalable
Universal Matrix Multiplication Algorithm,” Concurrency:
Practice and Experience, vol. 9(4), pp. 255–274, 1997.
20. J. Choi, J. Dongarra, S. Ostrouchov, A. Petitet, D.
Walker, and, R. C. Whaley, “A Proposal for a Set of
Parallel Basic Linear Algebra Subprograms”, University of
Tennessee, Knoxville, Tech. Rep. CS-95-292, May 1995.
21. L. S. Blackford et. al., ScaLAPACK Users' Guide,
SIAM, 1997, Philadelphia, PA.
22. J. Choi, “A Fast Scalable Universal Matrix
Multiplication Algorithm on Distributed-Memory
Concurrent Computers”, in Proc. IPPS '97, 1997.
23. C. Addison and Y. Ren, “OpenMP Issues Arising in
the Development of Parallel BLAS and LAPACK
libraries”, in Proceedings EWOMP’01. 2001.
24. G. R. Luecke and W. Lin, “Scalability and
Performance of OpenMP and MPI on a 128-Processor SGI
Origin 2000”, Concurrency and Computation: Practice
and Experience, vol. 13, pp 905-928. 2001.
25. M. Wu, S. Aluru, and R. A. Kendal, “Mixed Mode
Matrix Multiplication”, IEEE CLUSTER'02, 2002.

26. T. Betcke, “Performance analysis of various
parallelization methods for BLAS3 routines on cluster
architectures”, John von Neumann-Instituts für
Computing, Tech. Rep. FZJ-ZAM-IB-2000-15, Nov, 2000.
27. J. L. Träff, H. Ritzdorf, R. Hempel “The
Implementation of MPI-2 One-Sided Communication for
the NEC SX-5”, in Proceedings of Supercomputing, 2000.
28. J. Liu, J. Wu, S. P. Kinis, P. Wyckoff, and D. K.
Panda, “High Performance RDMA-Based MPI
Implementation over InfiniBand”, in Proc of 17th ACM
International Conference on Supercomputing, 2003.
29. J. Nieplocha, V. Tipparaju, M. Krishnan, G.
Santhanaraman, and D.K. Panda,”Optimizing Mechanisms
for Latency Tolerance in Remote Memory Access
Communication on Clusters”, IEEE CLUSTER, 2003.
30. A. Grama, A. Gupta, G. Karypis, and V. Kumar,
Introduction to Parallel Computing, Addison Wesley,
2003.
31. Optimizing Applications on the Cray X1TM System.
http://www.cray.com/craydoc/20/manuals/S-2315-
50/html-S-2315-50/S-2315-50-toc.html
32. J. Nieplocha and B. Carpenter, “ARMCI: A Portable
Remote Memory Copy Library for Distributed Array
Libraries and Compiler Run-time Systems”, in
Proceedings of RTSPP IPPS/SDP, 1999.
33. ARMCI Web page.
http://www.emsl.pnl.gov/docs/parsoft/armci/
34. J. Nieplocha, V. Tipparaju, J. Ju, and E. Apra, “One-
sided communication on Myrinet”, Cluster Computing,
vol. 6, pp. 115-124, 2003.
35. J. Nieplocha, V. Tipparaju, A. Saify, and D. Panda,
“Protocols and Strategies for Optimizing Remote Memory
Operations on Clusters”, Proc CAC/IPDPS’02.2002.
36. ORNL Tom Dunigan’s Evaluation of Early Systems
Webpage. http://www.csm.ornl.gov/~dunigan/
37. V. Tipparaju, M. Krishnan, J. Nieplocha, G.
Santhanaraman, and D.K. Panda, “Exploiting Non-
blocking Remote Memory Access Communication in
Scientific Benchmarks”, Proc. HiPC’2003, 2003.
38. B. Lawry, R. Wilson, A. B. Maccabe, and R.
Brightwell, “COMB: A Portable Benchmark Suite for
Assessing MPI Overlap”, IEEE Cluster, 2002.
39. J. B. White and S. W. Bova, “Where’s the overlap?
Overlapping communication and computation in several
popular MPI implementations”, in Proceedings of the
Third MPI Developers’ and Users’ Conference, 1999.

