
 
 
 

 

Abstract 
This paper describes a novel parallel algorithm that 
implements a dense matrix multiplication operation with 
algorithmic efficiency equivalent to that of Cannon’s 
algorithm. It is suitable for clusters and scalable shared 
memory systems. The current approach differs from the 
other parallel matrix multiplication algorithms by the 
explicit use of shared memory and remote memory access 
(RMA) communication rather than message passing. The 
experimental results on clusters (IBM SP, Linux-Myrinet) 
and shared memory systems (SGI Altix, Cray X1) 
demonstrate consistent performance advantages over 
pdgemm from the ScaLAPACK/PBBLAS suite, the leading 
implementation of the parallel matrix multiplication 
algorithms used today. In the best case on the SGI Altix, 
the new algorithm performs 20 times better than pdgemm 
for a matrix size of 1000 on 128 processors. The impact of 
zero-copy nonblocking RMA communications and shared 
memory communication on matrix multiplication 
performance on clusters are investigated. 

1. Introduction 
For many scientific applications, matrix multiplication is 
one of the most important linear algebra operations. By 
adopting a variety of techniques such as prefetching or 
blocking to exploit the characteristics of the memory 
hierarchy in current architectures, computer vendors have 
optimized the standard serial matrix multiplication 
interface in the open source Basic Linear Algebra 
Subroutines (BLAS) to deliver performance as close to the 
peak processor performance as possible. One of the 
significant innovations in this area was the recent 
discovery of a practical automatic performance tuning 
scheme for linear algebra operations, such as the matrix 
multiplication, in ATLAS [1] to maximize their 
performance for a given processor architecture as a part of 
the software installation process.  Because the optimized 
matrix multiplication can be so efficient, computational 
scientists, when feasible, attempt to reformulate the 
mathematical description of their application in terms of 
matrix multiplications.  
Parallel matrix multiplication has been investigated 
extensively in the last two decades [2-22]. There are 
different approaches for matrix-matrix multiplication: 1D-
systolic [5], 2D-systolic [5], Cannon’s algorithm [2], Fox’s 

algorithm [3, 4], Berntsen’s algorithm [6, 7], the transpose 
algorithm [8] and DNS algorithm [7, 14, 15].  Fox’s 
algorithm was extended in PUMMA [16] and BiMMeR 
[17] using different data distribution formats. Agarwal et 
al. [18] developed another matrix multiplication algorithm 
that overlaps communication with computation. SUMMA 
[19] is closely related to Agarwal’s approach, and is used 
in practice in pdgemm routine in PBLAS [20], which is 
one of the fundamental building blocks of ScaLAPACK 
[21]. DIMMA [22] is related to SUMMA but uses a 
different pipelined communication scheme for overlapping 
communication and computation.  
In the earlier studies, researchers targeted their parallel 
implementations for massively parallel processor (MPP) 
architectures with uniprocessor computational nodes (e.g., 
Intel Touchstone Delta, Intel IPSC/860, nCUBE/2) on 
which message passing was the highest-performance and 
typically the only communication protocol available. In 
particular, these algorithms relied on optimized broadcasts 
or send-receive operations. With the emergence of portable 
message-passing interfaces (PVM, and later MPI), the 
parallel matrix multiplication algorithms were 
implemented in a portable manner, distributed widely and 
used in applications.  
The current architectures differ in several key aspects from 
the earlier MPP systems. Regardless of the processor 
architecture (e.g., commodity vector, or commodity RISC, 
EPIC, CISC microprocessors) to improve the cost-
effectiveness of the overall system, both the high-end 
commercial designs (IBM SP, NEC SX-6, Hitachi SR-
8000, Cray X1, SGI Altix) and the commodity systems 
(Beowulf clusters) employ as a building block Symmetric 
Multi-Processor (SMP) nodes connected with an 
interconnect network. All of these architectures have the 
hardware support for load/store communication within the 
underlying SMP nodes, and some extend the scope of that 
protocol to the entire machine (Cray X1, SGI Altix). 
Although the high-performance implementations of 
message passing can exploit shared memory internally, the 
performance is less competitive than direct loads and 
stores. Multiple studies have attempted to exploit the 
OpenMP shared memory programming model in parallel 
matrix multiplication, either as a standalone approach on 
scalable shared memory systems [23, 24] or as a hybrid 
OpenMP-MPI approach [25, 26] on SMP clusters. Overall, 
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the reported experiences in comparison to the pure MPI 
implementations were not encouraging.   
The conceptual architectural model for which our 
algorithm was designed is a cluster of multiprocessor 
nodes connected with a network that supports remote 
memory access communication (put/get model) between 
the nodes. Remote memory access (RMA) is a simple 
communication model and, on modern systems, is often be 
the fastest communication protocol available, especially 
when implemented in hardware as zero-copy RMA 
write/read operations (e.g., Infiniband, Giganet, and 
Myrinet). RMA is often used to implement the point-to-
point MPI send/receive calls [27, 28]. To address the 
historically growing gap between the processor and 
network speed, our implementation relies on the 
availability of the nonblocking mode of RMA operation as 
the primary latency hiding mechanism (through 
overlapping communication with computations) [29]. In 
addition, each cluster node is assumed to provide efficient 
load/store operations that allow direct access to the data. In 
other words, a node of the cluster represents a shared 
memory communication domain. Our algorithm is 
explicitly aware of the task mapping to shared memory 
domains i.e., it is written to use shared memory to access 
parts of the matrix held between processors on the same 
SMP node, and nonblocking RMA operations to access 
parts of the matrix outside of the local shared memory 
domain (i.e., RMA domain). Note that the shared memory 
domain might not necessarily match the underlying SMP 
node configuration used as a hardware building block in 
many systems.  For example, the entire 128-processor SGI 
Altix system available to us was used as a single shared 
memory domain, even though underneath it is 
implemented based on a 2-processor SMP configuration 
with processors sharing the memory in the module 
(“brick”) and accessing the remainder of system memory 
through an interconnect network (“NUMAlink”). 
Implementing matrix multiplication directly on top of 
shared and remote memory access communication helps us 
optimize the algorithm with a finer level of control over 
data movement and hence achieve better performance. One 
difference between the OpenMP studies and the current 
approach is that instead of using a compiler-supported 
high-level shared memory model, we simply place the 
distributed matrices in shared memory and exercise full 
control over the data movement either through the use of 
explicit loads and stores or optimized block memory 
copies. In the comparison to the standard matrix 
multiplication interfaces pdgemm in ScaLAPACK [21] 
and SUMMA [19], the current algorithm achieved 
consistent and very competitive performance on four 
architectures used in the study. These were clusters based 
on 16-way (IBM SP) and 2-way (Linux/Xeon) nodes, and 
the shared memory NUMA SGI Altix architecture as well 
as the Cray X1 with its partitioned shared memory 

architecture. In the experimental comparisons, the same 
optimized implementation of the serial matrix 
multiplication was used for all parallel matrix 
multiplication algorithms. The described algorithm is more 
general, memory efficient, and demonstrated excellent 
performance and scalability on all four platforms. In 
addition to describing the new algorithm, this paper 
demonstrates that the efficient implementation of the 
communication protocols plays a key role in the 
performance of matrix multiplication. The zero-copy and 
nonblocking characteristics of the communication 
protocols were found to be of critical importance for the 
performance of the matrix multiplication algorithm on 
clusters. In contrast to the OpenMP implementation of 
matrix multiplication on shared memory systems [23, 24], 
the direct use of shared memory produced excellent 
performance as compared to MPI (used in 
ScaLAPACK/PBBLAS pdgemm and SUMMA). For 
example, for a matrix size 2000x2000 on 128 processors of 
the Cray X1, ScaLAPACK (Cray optimized -lsci) 
produced 128 GFLOP/s, where as our algorithm performed 
at 922 GFLOP/s. In the best case on the SGI Altix, the new 
algorithm performs 20 times better than ScaLAPACK 
pdgemm for a matrix size of 1000x1000 on 128 
processors.  
The paper is organized as follows. The next section 
describes our algorithm and analyzes its efficiency model. 
In Section 3, practical implementations of the algorithm 
are presented for clusters and shared memory systems. 
Section 4 describes and analyzes performance results for 
the new algorithm and ScaLAPACK matrix multiplication 
as well as results for the communication operations used in 
the implementation. The impact of zero-copy and 
nonblocking communication on the matrix multiplication 
performance is demonstrated. Finally, summary and 
conclusions are given in Section 5. 

2. New Algorithm – SRUMMA 
At the high level, our algorithm, called SRUMMA (Shared 
and Remote-memory based Universal Matrix 
Multiplication Algorithm), follows the serial block-based 
matrix multiplication (see Figure 1) by assuming the 
regular block distribution of the matrices A, B, and C and 
adopting the “owner computes” rule with respect to blocks 
of the matrix C. Each process accesses the appropriate 
blocks of the matrices A and B to multiply them together 
with the result stored in the locally owned part of matrix C. 
The specific protocol used to access nonlocal blocks varies 
depending on whether they are located in the same or other 
shared memory domain as the current processor. In 
principle, the overall sequence of block matrix 
multiplications can be similar to that in Cannon’s 
algorithm. However, unlike Cannon’s algorithm, where 
skewed blocks of matrix A and B are shifted using 
message-passing to the logically neighboring processors, 



 
 
 

 

our approach fetches these blocks independently, as 
needed, without requiring any coordination with the 
processors that own the matrix blocks. This is possible 
thanks to the use of RMA and shared memory access 
protocols. In addition, the specific sequence in which the 
block matrix multiplications are executed is determined 
dynamically at run time to more efficiently schedule and 
overlap communication with computations. The absence of 
sender-receiver synchronization/coordination (such in 
Cannon’s algorithm) based on message passing makes the 
overall algorithm more asynchronous and thus more suited 
for the execution environments where the computational 
threads share a CPU with other processes and system 
daemons (e.g., on commodity clusters). This is because 
synchronization amplifies performance degradations due to 
the nonexclusive use of the processor by the application. 

2.1 Baseline Efficiency Model 
Consider a matrix multiplication operation C = AB, where 
the order of matrices A, B, and C is m x k, k x n, and m x n, 
respectively. Let us denote: 

tw - data transfer time per element 
 ts - latency (or startup cost) 
 p x q - process grid in two-dimensional fashion 
 P - number of processors 
and assume (as in [7, 30]) that the cost of the addition and 
multiplication floating point operation takes unit time (line 
5 in Figure 1).  For our analysis, we assume a two-
dimensional matrix distributed as shown in Figure 2. Each 
process owns a block of the A, B and C matrices of 
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For simplicity let us assume, m=n=k=N and p=q= P , 
then the above equation becomes, 
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For a network with sufficient bandwidth, ts can be 
neglected as it is relatively small when compared to the 
total communication time. Therefore, the parallel 
efficiency (η) is 

η = Speedup/P ≈ 
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The isoefficiency function of this algorithm is O (P3/2), 
which is the same as Cannon’s algorithm [7, 19]. 
 
Overlapping communication with computations: When 
non-blocking RMA is used to transfer matrix blocks, the 
communication can be overlapped with computation, as 
shown in Figure 3. 
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When Tcomp >= Tcomm (i.e., 100% overlap), equation (3) 
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1: for i=0 to s-1 { 
2:     for j=0 to s-1 { 
3:         Initialize all elements of Cij to zero (optional) 
4:         for k=0 to s-1 { 
5:             Cij = Cij + Aik×Bkj 
6:         } 
7:         } 
8: } 

Figure 1: Block matrix multiplication for matrices  
N×N and block size N/s × N/s 

= x 

Figure 2: Matrix distribution example. In a 4 x 4 process grid, 
process P00 needs blocks of matrix A from P00, P01, P02, and P03, 
and blocks of matrix B from P00, P10, P20, and P30. 
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3 Implementation Considerations 
To derive an efficient implementation of the matrix 
multiplication algorithm, we rely on the following 
assumptions: 1) the ability to overlap computation with the 
network communication on clusters is essential for latency 
hiding; 2) hardware-supported shared memory is the 
fastest protocol available on the shared memory 
architectures and SMP nodes of the current clusters ; 3) to 
avoid dependencies on the OpenMP interfaces and 
compiler technology, we need as much control over shared 
memory communication as possible; and 4) use of RMA is 
preferable to the send-receive model, as it makes the 
implementation simpler and potentially more efficient due 
to reduced synchronization. Based on these assumptions, 
we designed two instances of the matrix multiplication 
algorithm. We will first describe algorithm implementation 
for clusters composed of nodes with shared memory 
domains; then we will discuss special considerations for 
the scalable shared memory systems. 

3.1 Cluster Version 
For each processor p and corresponding matrix block Cij 
held on that processor, 
1. Build a list of tasks (where a task computes each of the 

AikBkj products.) corresponding to the block matrix 

multiplications in: ∑
=

=
pn

k
kjikij BAC

1
    (4) 

2. Reorder the task list according to the communication 
domains for processors at which the Aik, Bkj are stored. 
The tasks that involve matrix blocks stored in the 
shared memory domain of the current processor are 
moved to the beginning of the list. This is done to 
ensure overlap of computations and nonblocking 
communication required to bring matrix blocks from 
other cluster nodes to compute the other tasks on the 
list. Since the tasks at the beginning of the list use data 
accessible directly, we do not have to wait to start the 
pipeline. Another consideration in sorting the task list 
is to optimize the locality reference so that the currently 
held Aik matrix block is used in consecutive matrix 
products before its copy is discarded and the 
corresponding buffer reused. 

3. For each task on the list,  
• Issue a nonblocking get operation for the matrix block 

involved in the next task on the list if it is not on the 
same node.  

• Wait for the nonblocking get operation bringing Aik 
and/or Bkj needed to execute the current task.  

• Call serial matrix multiplication dgemm that computes  
AikBkj and adds the result to the Cij block.  

4. There are two temporary buffers (B1 and B2) used 
internally. One buffer is used for communication and 
the other buffer is used for computation as shown in 
Figure 3. At a given step, a processor receives data in 
B2 while computing the data in B1. In the next step, 

data received in B2 is used for computation and B1 is 
used for receiving data. Overlapping communication 
with computation is achieved in all steps, except first. 

As a further refinement of the algorithm, as shown in 
Figure 4, the “diagonal shift” algorithm is used in Step 2 to 
sort the task list so that the communication pattern reduces 
the communication contention on clusters. We verified 
experimentally on the IBM SP that indeed this improves 
performance. For example, consider matrix A that is 
distributed on a 4 x 4 processor grid, on a 4-way SMP 
cluster. As shown in Figures 4a and 4b, node 1 has 
processors P00, P10, P20, and P30; node 2 has P01, P11, P21, 
and P31; etc.,. To compute its locally owned matrix C, a 
processor needs the corresponding rows and columns of 
matrix A and B respectively, as shown in Figure 3. i.e., 
processor P00 needs blocks of matrix A from P00, P01, P02, 
and P03, and blocks of matrix B from P00, P10, P20, and P30. 
If the diagonal shift algorithm is not used, processors P00, 
P10, P20, and P30 get a block from P01, P11, P21, and P31, 

respectively in the first step. Thus all the 4 processors are 
trying to share the bandwidth between node1 and node2. If 
the diagonal shift algorithm is used instead, then 
processors P00, P10, P20, and P30 get a block from P00 
(node1), P11 (node2), P22 (node3), and P33 (node4), 
respectively in the first step, thus reducing the contention. 
This algorithm performs better if there are more processors 
per node (e.g., 16-way IBM SP). Figure 4c represents the 
pattern of getting blocks by processors in node 1. 

A B C

Computation  

Communication 

Figure 3. Using two sets of buffers to overlap 
communication and computation in matrix 
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(c) 

P00 P03 P02 P01 

P10 P13 P12 P11 
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Figure 4: Pattern of getting blocks on a 4-way SMP cluster to 
reduce communication contention. 



 
 
 

 

3.2 Shared Memory Version 
The cluster algorithm running on a system with one shared 
memory communication domain reduces to the shared 
memory version. However, this algorithm has two flavors; 
the one used depends on whether remote shared memory is 
locally cacheable. For example, the Cray X1 with its 
partitioned shared memory supports load/store operations 
for its entire memory. The system is a cluster with four 
multi-stream processors (MSPs) on each node. A virtual 
memory address includes node number and address within 
that node. The memory on other nodes can be accessed 
with the load/store operations; however, it cannot be 
cached due to the memory coherency protocol [31]. 
Because the performance of the serial matrix 
multiplication depends critically on the effective cache 
utilization, on the Cray X1 we copy nonlocal blocks of 
matrices A and B to a local buffer before calling the serial 
matrix multiplication. 
On the other hand, the SGI Altix is a shared memory 
system where shared memory data can be cached. 
Therefore, the matrix multiplication does not require 
explicit memory copies. Instead, the appropriate blocks of 
matrix A and B are passed directly to the serial matrix 
multiplication subroutine. A comparison between these 
two schemes for C = ATB and C = AB on these two 
platforms is illustrated in Figure 5. The SGI Altix uses 1.5-
GHz Intel Itanium-2 processors rated at 6 GFLOP/s 
whereas the Cray X1 processor is rated at 12.8 GFLOP/s. 
As expected, the copy-based version is faster than the 
direct access version on the Cray X1 and somewhat slower 
on the SGI Altix (the gap between these two algorithms 
actually increases for larger processor counts on the Altix). 

3.3 Portable Implementation 
Our current implementation of the matrix multiplication 
algorithm relies on the portable Aggregate Remote 
Memory Copy Interface (ARMCI) library [32] and, in 
particular, the memory allocation interface 
ARMCI_Malloc, nonblocking get operations, and the 
cluster configuration query interfaces [33]. The cluster 
configuration information provided by ARMCI enables the 
application at run time to determine which processors can 
communicate through shared memory. ARMCI_Malloc is 
a collective memory allocator that allocates shared 
memory on clusters or shared memory architectures (e.g., 
SGI Altix). This is accomplished using OS calls such as 
the System V shmget/shmat, with the exception of the 
Cray X1, where even memory allocated by malloc can be 
globally shared. ARMCI_Malloc returns pointers to the 
memory allocated for all the processors. Using the pointer 
values and cluster locality information, processors in the 
same shared memory domain can access the allocated 
memory directly through load/store operations or through 
the ARMCI communication calls. For example, the 
ARMCI get/put operations are implemented as a memory 
copy within the SMP node of a cluster. Thanks to the 

ARMCI compatibility with MPI, the current 
implementation of the matrix multiplication routine could 
be used in normal MPI-based programs, provided that the 
distributed arrays are allocated using ARMCI_Malloc 
rather than, for example, the standard malloc call. This is 
not a significant restriction because in most applications, 
distributed arrays are created collectively anyway. To 
achieve maximum performance in the RMA 
communication on Linux clusters with Myrinet, 
ARMCI_Malloc internally attempts to register the memory 
used for the matrices with the Myrinet GM network 
interface driver. If registration is successful, it enables the 
direct use of efficient zero-copy communication through 
the GM Myrinet protocols. Otherwise, either copy-based 
or on-the-fly dynamic memory registration protocols are 
used [34, 35]. MPICH-GM registers user communication 
buffers to enable zero-copy data transfers as well; these 
registrations are transparent to the user. The zero-copy 
communication enables the network interface card (NIC) 
to complete the data transfers without involving the host 
CPU. This is important for ensuring progress in the 
nonblocking communication while the host CPU is 
involved in computations. 

4. Experimental Study 
To validate the effectiveness of the proposed algorithm, we 
ran numerical experiments on four platforms: 

• Linux cluster based on dual 2.4-GHz Intel Xeon 
nodes and Myrinet-2000 network 

• IBM SP based on 16-way 375-MHz Power-3 
CPUs and colony switch at the National Energy 
Research Scientific Computing Center 

• Cray X1 massively parallel vector supercomputer 
at Oak Ridge National Laboratory 

• SGI Altix 3000, shared-memory NUMA system 
with 128 1.5-GHz Intel Itanium-2 CPUs at Pacific 
Northwest National Laboratory. 

For the comparison, we used the pdgemm routine from 
ScaLAPACK Version 1.7, and SUMMA. However, to 
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Figure 5: Performance of matrix multiplication 
(N=2000) on 16 processors using direct access and copy 
on the Cray X1 and the SGI Altix 



 
 
 

 

save space we are reporting pdgemm results only, as it is 
the most commonly used parallel linear algebra library and 
the performance comparisons were similarly favorable 
with SUMMA. Moreover, SUMMA is used in practice in 
ScaLAPACK/PBLAS suite [20]. In all three parallel 
algorithms, the same dgemm (double precision serial 
matrix multiplication) routines from vendor optimized 
math library (-lsci for the X1, -lessl for the SP, -lscs for 
Altix, -lmkl for Xeon) were used. Optimum block sizes 
were chosen empirically for all matrix sizes and processor 
counts. 
Figure 10 presents the performance differences for 
SRUMMA and ScaLAPACK pdgemm for square matrices; 
matrix ranks range from 600 to 12000 on all four 
platforms. In these tests, the matrices were not transposed. 
As shown in Figure 10, the new algorithm outperforms 
pdgemm and scales better, with the most profound gains 
noted on the two shared memory systems, Cray X1 and 
SGI Altix. This is due to the benefit shared memory 
communication offers on these architectures over message 
passing. As a best case on Altix, SRUMMA performs 20 
times better than ScaLAPACK pdgemm for a matrix size 
of 1000 on 128 processors. However, memory bandwidth 
is a bottleneck for very large problem sizes (for e.g., 
problem size of 12000 on Altix) on shared memory 
systems. For the matrix size of 12000 on 128 CPUs we 
observe reduced scaling, most likely due to the fact that the 
larger test case increases the probability of the system 
daemons preempt the matrix multiplication code when all 
the processors on the Altix system were used. 
Our ScaLAPACK results are consistent with, and even 
better than, the results reported earlier by other researchers 
[36]. For example, [36] reports 48 GFLOP/s on Altix and 
112 GFLOP/s on Cray X1 to multiply matrices of size 
8000x8000 using ScaLAPACK pdgemm. Our pdgemm 
runs gave even better performance; 96 GFLOP/s on Altix 
and 243 GFLOP/s on the Cray X1. This difference is due 
to the faster processor and memory configuration on Altix 
(we used Altix with 1.5 Ghz Itanium-2 CPUs, instead of 
the 1.3 GHz model in [36]), and recent improvements in 
the vendor math libraries.  
The new algorithm performs better than ScaLAPACK on 
clusters as well. For example on the Linux cluster, it is 
faster by a factor of two for larger problem sizes, and by 
20% to 40% in most of the cases. In most of the cases 
(especially on Linux), we were able to overlap 90% of the 
communication with computation.  
Section 4.1 describes the impact of communication 
protocols to achieve this high degree of overlap. Since 
shared memory is the fastest communication protocol 
available on shared memory systems, it is not surprising 
that our algorithm outperforms ScaLAPACK algorithm 
implemented on top of message passing. However, to 
understand the performance differences between the two 
versions of the matrix multiplication algorithm on clusters 

we performed several tests to measure the role of the 
underlying communication protocols. 
 

 

 

4.1 Impact of communication protocols 
First, we investigated the performance of MPI send/receive 
operations and the ARMCI get operation (we did not 
include SGI Altix in this study due to the use of direct 
access protocol in our matrix multiplication). Figures 6 and 
8 shows that performance of these RMA protocols is better 
than MPI, with the exception of the short message range 
(in principle, the get operation involves request and reply 
which understandably leads to a higher latency). The MPI 
timings correspond to half of the round-trip message 
exchange. In addition, the high cost of AIX interrupt 
processing in LAPI makes the latency of this protocol 
higher than in MPI send-receive operations that uses 
polling. We also measured performance of MPI_Get (MPI-
2) on the IBM SP and found its performance to be 
relatively low as compared to the other two protocols. 
Unlike the message-passing implementation of the matrix 
multiplication in ScaLAPACK pdgemm, our algorithm is 
using nonblocking RMA, which offers a potential for 
overlapping communication with computations [37]. We 
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Figure 7: Potential degree of communication overlap on 
IBM SP and Linux cluster as a function of message-size
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Figure 6: Bandwidth comparison on Cray X1 



 
 
 

 

measured this potential for ARMCI and MPI on our two 
cluster platforms (see Figure 7). In comparison to MPI 
non-blocking, ARMCI non-blocking get offers almost 99% 
overlap for medium- and larger-sized messages. Similarly 
to other studies [38, 39], we found the potential degree of 
overlapping MPI communication with computations to be 
less favorable: it sharply decreases after a certain message 
size (16Kb) as MPI switches to the Rendezvous protocol 
[29]. Therefore, the use of nonblocking protocols in 
SRUMMA is expected to be beneficial when the problem 
size and processor count is increased, due to a high degree 
of overlapping of communication with computations.  
Our next communication-related test attempted to evaluate 
to what degree zero-copy RMA communication affects the 
performance of matrix multiplication. This communication 
approach allows the remote CPU to work on its own 
computations rather than be interrupted and involved in 
data copying on behalf of another processor. On the 
Myrinet with GM 1.X, ARMCI is implemented using the 
GM put operation and pthreads [35]. Unlike Myrinet GM, 
IBM LAPI is not a zero-copy protocol, thus we could only 
use Myrinet to investigate the role zero-copy protocols 
play in performance of the matrix multiplication. The new 
matrix multiplication algorithm was tested when enabling 
and disabling the zero-copy implementation [29] of the 
ARMCI get operation. Figure 9 shows that zero-copy 
protocol is very important for performance of the new 
algorithm. This test is performed on the Linux cluster with 
Myrinet, using: 

• blocking and non-blocking communications, and  
• zero-copy protocol disabled and enabled.  

These results show that the performance benefit of using 
nonblocking communications is amplified when the zero-
copy protocol is enabled. This is because, the remote host 
CPU cycles are not taken away when overlapping 
communication with computation since the NICs are able 
to transfer the data between the user buffers across the 
network. We were able to overlap more than 90% of the 
communication with computation, thus the degree of 
overlapping (ω) is less than 10%. Therefore, Equation 3 
reduces to: 

Tpar_rma = PtPt
P

N
P

N
sw +⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

23
)1.0(  = ζ+

P
N 3

  

where ζ << (N3/P) for medium/larger problem sizes. 
ARMCI_Get is implemented as a trivial wrapper to 
LAPI_Get on the IBM SP. Because neither LAPI nor IBM 
MPI is a zero-copy protocol, the remote host CPU 
involvement is required to copy the data from the user 
buffers to DMA buffers before NIC can transfer it. 
Therefore, the performance is not optimal. However, the 
IBM SP is based on 16-way nodes, thus our algorithm ends 
up using shared memory for a larger fraction of 
interprocessor communication than on the Linux cluster. 
This partly compensates for the lack of zero-copy 
communication on the IBM SP and makes the new matrix 

multiplication algorithm work faster overall than 
ScaLAPACK. Based on the Myrinet experiments, we 
would expect our matrix multiplication to benefit from 
zero-copy protocols in LAPI, which IBM has already 
introduced in KLAPI, a kernel version of this library.  
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Figure 9: Performance of the matrix multiplication on 
Linux Cluster (Myrinet Interconnect) with enabled or 
disabled zero-copy protocol 
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Figure 10: Performance of the new algorithm with ScaLAPACK pdgemm on different platforms 



 
 
 

 

4.2 Transpose and Rectangular Matrices  
We also measured the performance of matrix 
multiplication using SRUMMA and 
ScaLAPACK/PBBLAS pdgemm for transposed and 
rectangular matrices. Three variants were considered: C = 
ATB (i.e., A is transposed, B is not), C = ABT and C = 
ATBT.  For rectangular matrices operation C = AB, where 
the order of matrices A, B, and C is m x k, k x n, and m x n, 
respectively. Several tests involving various sizes of 
matrices ranging in size from 600 to 8000 and of different 
shapes were conducted. Due to the space limitations, we 
cannot demonstrate all the performance result. However, 
the best cases are presented in Table 1 included in the next 
section. SRUMMA consistently outperformed pdgemm on 
clusters and shared memory systems in most of the cases. 
The observed performance is similar square and non-
transposed cases. SRUMMA scaled well when the number 
of processors and/or the problem size was increased, thus 
proving the algorithm is cost-optimal. In all the cases, 
SRUMMA took advantage of the shared memory 
communication (in the case of shared memory systems), 
and zero-copy and non-blocking RMA protocols (in the 
case of the cluster), to achieve high performance. 
However, performance degrades for smaller matrices on 
larger processor counts. This is because, for small matrix 
sizes and larger processor counts, the potential for 
overlapping is limited. Moreover, for short message 
ranges, the get operation involves request and reply, which 
leads to a higher latency.  
 

Matrix Size CPUs Case 
Platform 

SRUMMA 
(GFLOP/s) 

pdgemm 
(GFLOP/s) 

4000x4000 128 C=AB 
(Altix) 

384 33.9 

2000x2000 128 C=AB  
(Cray X1) 

922 128 

12000x 
12000 128 C=AB 

(Linux) 
323.2 138.6 

8000x8000 256 C=AB  
(IBM SP3) 

223 186 

600x600 128 C=ATBT 

(Linux) 
16.64 6.4 

16000x 
16000 128 C=ATB 

(IBM SP3) 
108.9 77.4 

4000x4000 128 C=ATBT 

(Altix) 
369 24.3 

m=4000; 
n=4000; 
k=1000 

Rectangula
r 

128 160 107.5 

m=1000; 
n=1000; 
k=2000 

rectangular 

64 288 17.28 

Table 1: SRUMMA best cases. 

5. Summary and Conclusions 
This paper described a novel parallel algorithm for a dense 
matrix multiplication operation with algorithmic efficiency 
equivalent to that of Cannon’s algorithm. Unlike the other 
leading parallel algorithms based on message passing, the 
current approach exploits shared memory and nonblocking 
remote memory access protocols on clusters and shared 
memory systems. Overall, the algorithm achieved 
consistent and substantial performance gains over the 
parallel matrix multiplication in the 
ScaLAPACK/PBBLAS suite. Some of its best cases are 
presented in Table 1. The experimental results on clusters 
indicate that the nonblocking zero-copy RMA 
communication plays an important role in the ability to 
overlap communication with computations and improve 
efficiency of the algorithm. On shared memory systems 
cache and direct access are instrumental in achieving high 
levels of performance, even though on the Cray X1 an 
additional memory copy might be involved.  
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