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Abstract  

In many applications, matrix multiplication involves different shapes of matrices.  The shape of the matrix 

can significantly impact the performance of matrix multiplication algorithm. This paper describes 

extensions of the SRUMMA parallel matrix multiplication algorithm [1] to improve performance of 

transpose and rectangular matrices. Our approach relies on a set of hybrid algorithms which are chosen 

based on the shape of matrices and transpose operator involved. The algorithm exploits performance 

characteristics of clusters and shared memory systems:  it differs from the other parallel matrix 

multiplication algorithms by the explicit use of shared memory and remote memory access (RMA) 

communication rather than message passing. The experimental results on clusters and shared memory 

systems demonstrate consistent performance advantages over pdgemm from the ScaLAPACK parallel 

linear algebra package.  

1. Introduction 

For many scientific applications, matrix multiplication is one of the most important linear algebra 

operations. By adopting a variety of techniques such as prefetching or blocking to exploit the 

characteristics of the memory hierarchy in current architectures, computer vendors have optimized the 

standard serial matrix multiplication interface in the open source Basic Linear Algebra Subroutines 

(BLAS) to deliver performance as close to the peak processor performance as possible. Because the 

optimized matrix multiplication can be so efficient, computational scientists, when feasible, attempt to 

reformulate the mathematical description of their application in terms of matrix multiplications.  

Parallel matrix multiplication has been investigated extensively in the last two decades [2-22]. There are 

different approaches for matrix-matrix multiplication: 1D-systolic [5], 2D-systolic [5], Cannon’s 
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algorithm [2], Fox’s algorithm [3, 4], Berntsen’s algorithm [6, 7], the transpose algorithm [8] and DNS 

algorithm [7, 14, 15].  Fox’s algorithm was extended in PUMMA [16] and BiMMeR [17] using different 

data distribution formats. Agarwal et al. [18] developed another matrix multiplication algorithm that 

overlaps communication with computation. SUMMA [19] is closely related to Agarwal’s approach, and is 

used in practice in pdgemm routine in PBLAS [20], which is one of the fundamental building blocks of 

ScaLAPACK [21]. DIMMA [22] is related to SUMMA but uses a different pipelined communication 

scheme for overlapping communication and computation. In the earlier studies, researchers targeted their 

parallel implementations for massively parallel processor (MPP) architectures with uniprocessor 

computational nodes (e.g., Intel Touchstone Delta, Intel IPSC/860, nCUBE/2) on which message passing 

was the highest-performance and typically the only communication protocol available. In particular, these 

algorithms relied on optimized broadcasts or send-receive operations. With the emergence of portable 

message-passing interfaces (PVM, and later MPI), the parallel matrix multiplication algorithms were 

implemented in a portable manner, distributed widely and used in applications.  

The current architectures differ in several key aspects from the earlier MPP systems. Regardless of the 

processor architecture (e.g., commodity vector, or commodity RISC, EPIC, CISC microprocessors) to 

improve the cost-effectiveness of the overall system, both the high-end commercial designs  and the 

commodity systems employ as a building block Symmetric Multi-Processor (SMP) nodes connected with 

an interconnect network. All of these architectures have the hardware support for load/store 

communication within the underlying SMP nodes, and some extend the scope of that protocol to the entire 

machine (Cray X1, SGI Altix). Although the high-performance implementations of message passing can 

exploit shared memory internally, the performance is less competitive than direct loads and stores. 

Multiple studies have attempted to exploit the OpenMP shared memory programming model in the 

parallel matrix multiplication, either as a standalone approach on scalable shared memory systems [23, 24] 

or as a hybrid OpenMP-MPI approach [25, 26] on SMP clusters. Overall, the reported experiences in 

comparison to the pure MPI implementations were not encouraging.   



 3 

The underlying conceptual model of the architecture for which the SRUMMA (Shared and Remote-

memory based Universal Matrix Multiplication Algorithm) algorithm was designed is a cluster of 

multiprocessor nodes connected with a network that supports remote memory access communication 

(put/get model) between the nodes [1]. Remote memory access (RMA) is often be the fastest 

communication protocol available, especially when implemented in hardware as zero-copy RDMA 

write/read operations (e.g., Infiniband, Giganet, and Myrinet). RMA is often used to implement the point-

to-point MPI send/receive calls [27, 28]. To address the historically growing gap between the processor 

and network speed, our implementation relies on the availability of the nonblocking mode of RMA 

operation as the primary latency hiding mechanism (through overlapping communication with 

computations) [29]. In addition, each cluster node is assumed to provide efficient load/store operations 

that allow direct access to the data. In other words, a node of the cluster represents a shared memory 

communication domain. SRUMMA is explicitly aware of the task mapping to shared memory domains 

i.e., it is written to use shared memory to access parts of the matrix held on processors within the domain 

of which the given processor is a part, and nonblocking RMA operations to access parts of the matrix 

outside of the local shared memory domain (i.e., RMA domain).  

Implementing matrix multiplication directly on top of shared and remote memory access communication 

helps us optimize the algorithm with a finer level of control over data movement and hence achieve better 

performance. One difference between the OpenMP studies and our approach is that instead of using a 

compiler-supported high-level shared memory model, we simply place the distributed matrices in shared 

memory and exercise full control over the data movement either through the use of explicit loads and 

stores or optimized block memory copies. In the comparison to the standard matrix multiplication 

interfaces pdgemm in ScaLAPACK [21] and SUMMA [19], it was shown [1] that for square matrices 

SRUMMA achieves consistent and very competitive performance on four architectures used in the study. 

These were clusters based on 16-way (IBM SP) and 2-way (Linux/Xeon) nodes, shared memory NUMA 

SGI Altix architecture as well as the Cray X1 with its partitioned shared memory architecture. In the 



 4 

current paper we extend the SRUMMA algorithm to handle efficiently rectangular and transposed 

matrices. With the current optimizations, the SRUMA algorithm is general, memory efficient, and able to 

deliver excellent performance and scalability on both clusters and scalable shared memory systems. In 

contrast to the OpenMP implementation of matrix multiplication on shared memory systems [23, 24], the 

direct use of shared memory produced excellent performance as compared to MPI (used in ScaLAPACK 

and SUMMA). For example on 128 processors of the SGI Altix in multiplication of transposed square 

matrices 4000x4000, SRUMMA achieves 15.18 times higher aggregate GFLOPs performance level than  

ScaLAPACK pdgemm. For rectangular matrices (m=4000 n=4000 k=1000) on the Linux cluster with 

Myrinet, SRUMMA outperformed ScaLAPACK pdgemm by 48.8%. In all cases, the same serial matrix 

multiplication was used.  

The paper is organized as follows. The next section describes the SRUMMA algorithm, its efficiency 

model, and implementation. In Section 3, variations of the algorithm are described to handle efficiently 

transposed and rectangular matrices, and analysis of techniques for dealing with different matrix shapes is 

presented. Section 4 describes and analyzes performance results for the new algorithm and ScaLAPACK 

matrix multiplication as well as results for the communication operations used in the implementation.  

Finally, summary and conclusions are given in Section 5. 

2. Description of SRUMMA  

At the high level, SRUMMA (Shared and Remote-memory based Universal Matrix Multiplication 

Algorithm), follows the serial block-based matrix multiplication (see Figure 1) by assuming the regular 

block distribution of the matrices A, B, and C and adopting the “owner computes” rule with respect to 

blocks of the matrix C. Each process accesses the appropriate blocks of the matrices A and B to multiply 

them together with the result stored in the locally owned part of matrix C. The specific protocol used to 

access nonlocal blocks varies depending on whether they are located in the same or other shared memory 

domain as the current processor.  
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In principle, the overall sequence of block matrix multiplications can be similar to that in Cannon’s 

algorithm. However, unlike Cannon’s algorithm, where skewed blocks of matrix A and B are shifted 

using message-passing to the logically neighboring processors, our approach fetches these blocks 

independently, as needed, without requiring any coordination with the processors that own the matrix 

blocks. This is possible thanks to the use of RMA or shared memory access protocols. In addition, the 

specific sequence in which the block matrix multiplications are executed is determined dynamically at run 

time to more efficiently schedule and overlap communication with computations. The absence of sender-

receiver synchronization/coordination (such in Cannon’s algorithm) based on message passing makes the 

overall algorithm more asynchronous and thus more suited for the execution environments where the 

computational threads share a CPU with other processes and system daemons (e.g., on commodity 

clusters). This is because synchronization amplifies performance degradations due to the nonexclusive 

use of the processor by the application.  

2. 1 Baseline Efficiency Model 

Consider a matrix multiplication operation C = AB, where the order of matrices A, B, and C is m x k, k x 

n, and m x n, respectively. Let us denote: tw - data transfer time per element, ts - latency (or startup cost), P 

- number of processors, p x q - process grid in two-dimensional fashion i.e., P = p x q, and assume 

(similarly to other papers [7, 30]) cost of the addition and multiplication floating point operation takes 

unit time (line 5 in Figure 1).  For our analysis, we assume a two-dimensional matrix distributed as shown 

1: for i=0 to s-1 { 
2:     for j=0 to s-1 { 
3:         Initialize all elements of Cij to zero (optional) 
4:         for k=0 to s-1 { 
5:             Cij = Cij + Aik×Bkj 
6:         } 
7:         } 
8: } 

Figure 1: Block matrix multiplication for matrices N×N and block size N/s × N/s 
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in Figure 2. Each process owns a block of A, B and C matrix of size
q
n

p
m × , 

q
k

p
m ×  and 

q
n

p
k × , 

respectively. The sequential time Tseq of the matrix multiplication algorithm is N3 (say, m=n=k=N). The 

parallel time Tpar_rma is the sum of computation time and the time to get the blocks of matrices A and B.  

Tpar_rma  = Computation Time (Tcomp) + Communication Time (Tcomm) 

Tcomm = (time to get row of matrix A blocks) + (time to get column of B blocks) 

= Trow_comm + Tcolumn_comm 
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For simplicity let us assume, m=n=k=N and p=q= P , then the above equation becomes, 

 Tpar_rma  = Ptt
P

N
P

N
sw 22

23

++       (1) 
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P
N 3

 + O ��
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N 2

 + O ( )P      (2) 

= x
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Figure 2: Matrix distribution example. In a 4 x 4 process grid, process P0 needs blocks of matrix A from 
P0, P4,, P8, and P12, and blocks of matrix B from P0, P1, P2, and P3. 
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For a network with sufficient bandwidth, ts can be neglected as it is relatively small when compared to the 

total communication time. Therefore, the parallel efficiency (�) is 

� = Speedup/P = 

wt
N

P2
1

1

+
 = 

�
�
�

�
�
�
�

�
+

N
P

O1

1
 

The isoefficiency function of this algorithm is O (P3/2), which is the same as Cannon’s algorithm [7, 19]. 

Overlapping communication with computation: When non-blocking RMA is used to transfer matrix 

blocks, the communication can be overlapped with computation, as shown in Figure 3. 

The degree of overlapping, �, is defined as follows: � = ��
�
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comm
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T

T
1  ; if � < 0, � = 0 

Introducing � in (1), Tpar_rma = PtPt
P
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When Tcomp >= Tcomm (i.e., 100% overlap), equation (3) reduces to 

 Tpar_rma  = Pt
P

N
s2

3

+  = O ��
�

�
��
�

�

P
N 3

 + O ( )P . 

2.2 Implementation Considerations 

To derive an efficient implementation of the matrix multiplication algorithm, we rely on the following 

assumptions: 1) the ability to overlap computation with the network communication on clusters is 

essential for latency hiding; 2) hardware-supported shared memory is the fastest protocol available on the 

shared memory architectures and SMP nodes of the current clusters ; 3) to avoid dependencies on the 

OpenMP interfaces and compiler technology, we need as much control over shared memory 

communication as possible; and 4) use of RMA is preferable to the send-receive model, as it makes the 

implementation simpler and potentially more efficient due to reduced synchronization. Based on these 

assumptions, we designed two instances of the matrix multiplication algorithm. We will first describe 

algorithm implementation for clusters composed of nodes with shared memory domains; then we will 

discuss special considerations for the scalable shared memory systems. 

2.2.1 Cluster Version 

For each processor p and corresponding matrix block Cij held on that processor, 
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1. Build a list of tasks corresponding to the block matrix multiplications in: 

�
=

=
pn

k
kjikij BAC

1

       (4) 

 where, a task computes each of the AikBkj products. 

2. Reorder the task list according to the communication domains for processors at which the Aik, Bkj 

are stored. The tasks that involve matrix blocks stored in the shared memory domain of the 

current processor are moved to the beginning of the list. This is done to ensure overlap of 

computations and nonblocking communication required to bring matrix blocks from other cluster 

nodes to compute the other tasks on the list. Since the tasks at the beginning of the list use data 

accessible directly, we do not have to wait to start the pipeline. Another consideration in sorting 

the task list is to optimize the locality reference so that the currently held Aik matrix block is used 

in consecutive matrix products before its copy is discarded and the corresponding buffer reused. 

3. For each task on the list,  

• Issue a nonblocking get operation for the matrix block involved in the next task on the list 

if it is not on the same node.  

• Wait for the nonblocking get operation bringing Aik and/or Bkj needed to execute the 

current task.  

• Call serial matrix multiplication dgemm that computes  AikBkj and adds the result to the Cij 

block.  

 

�� ��
������

��������	�
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�����
	���	�
�
���������

Figure 3: Overlapping communication with computation in matrix multiplication 
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4. There are two temporary buffers (B1 and B2) used internally. One buffer is used for 

communication and the other buffer is used for computation as shown in Figure 3. At a given 

step, a processor receives data in B2 while computing the data in B1. In the next step, data 

received in B2 is used for computation and B1 is used for receiving data. Overlapping 

communication with computation is achieved in all steps, except first. 

 

As a further refinement of the algorithm, as shown in Figure 4, the “diagonal shift” algorithm is used in 

Step 2 to sort the task list so that the communication pattern reduces the communication contention on 

clusters. We verified experimentally on the IBM SP that this indeed improves performance. For example, 

consider a matrix A that is distributed on a 4 x 4 processor grid (as shown in Figure 4a) on a 4-way SMP 

cluster, i.e., node 1 has processors P00, P10, P20, and P30; node 2 has P01, P11, P21, and P31; etc., as shown 

in Figure 4b. To compute its locally owned matrix C, a processor needs the corresponding rows and 

columns of matrix A and B respectively, as shown in Figure 3. i.e., processor P00 needs blocks of matrix A 

from P00, P01, P02, and P03, and blocks of matrix B from P00, P10, P20, and P30. If the diagonal shift 

algorithm is not used, processors P00, P10, P20, and P30 get a block from P01, P11, P21, and P31, respectively 

P00 P03 P02 P01 

P10 P13 P12 P11 

P20 

 

P23 P22 P21 

P30 P33 P32 P31 

(a) (b) 

(c) 

P00 P03 P02 P01 

P10 P13 P12 P11 

P20 

 

P23 P22 P21 

P30 P33 P32 P31 

Figure 4: Pattern of getting blocks on a 4-way SMP cluster to reduce 
communication contention. 
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in the first step. Thus all the 4 processors are trying to share the bandwidth between node1 and node2. If 

the diagonal shift algorithm is used instead, then processors P00, P10, P20, and P30 get a block from P00 

(node1), P11 (node2), P22 (node3), and P33 (node4), respectively in the first step, thus reducing the 

contention. This algorithm performs better if there are more processors per node (e.g., 16-way IBM SP). 

Figure 4c represents the pattern of getting blocks by processors in node 1. 

2.2.2 Shared Memory Version 

The cluster algorithm running on a system with one shared memory communication domain reduces to 

shared memory version. However, this algorithm has two versions; the one used depends on whether 

remote shared memory is locally cacheable. For example, the Cray X1 with its partitioned shared memory 

supports load/store operations for its entire memory. The system is a cluster with four multi-stream 

processors (MSPs) on each node. A virtual memory address includes node number and address within 

that node. The memory on other nodes can be accessed with the load/store operations; however, it cannot 

be cached due to the memory coherency protocol [31]. Because the performance of the serial matrix 

multiplication depends critically on the effective cache utilization, on the Cray X1 we copy nonlocal 

blocks of matrices A and B to a local buffer before calling the serial matrix multiplication. 
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Figure 5: Performance of matrix multiplication (N=2000) on 16 processors using direct access 
and copy on the Cray X1 and the SGI Altix 
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On the other hand, the SGI Altix is a shared memory system where shared memory data can be cached. 

Therefore, the matrix multiplication does not require explicit memory copies. Instead, the appropriate 

blocks of matrix A and B are passed directly to the serial matrix multiplication subroutine. A comparison 

between these two schemes for C = ATB and C = AB on these two platforms is illustrated in Figure 5. The 

SGI Altix uses 1.5-GHz Intel Itanium-2 processors rated at 6 GFLOP/s whereas the Cray X1 processor is 

rated at 12.8 GFLOP/s. As expected, the copy-based version is faster than the direct access version on the 

Cray X1 and somewhat slower on the SGI Altix (the gap between these two versions actually increases 

for larger processor counts on the Altix). 

2.3 Practical Implementation 

Our current implementation of SRUMMA relies on the portable Aggregate Remote Memory Copy 

Interface (ARMCI) library [32] and, in particular, the memory allocation interface ARMCI_Malloc, 

nonblocking get operations, and the cluster configuration query interfaces [33]. The cluster configuration 

information provided by ARMCI enables the application at run time to determine which processors can 

communicate through shared memory. ARMCI_Malloc is a collective memory allocator that allocates 

shared memory on clusters or shared memory architectures (e.g., SGI Altix). This is accomplished using 

OS calls such as the System V shmget/shmat, with the exception of the Cray X1, where even memory 

allocated by malloc can be globally shared. ARMCI_Malloc returns pointers to the memory allocated for 

all the processors. Using the pointer values and cluster locality information, processors in the same shared 

memory domain can access the allocated memory directly through load/store operations or through the 

ARMCI communication calls. For example, the ARMCI get/put operations are implemented as a memory 

copy within the SMP node of a cluster. Thanks to the ARMCI compatibility with MPI, the current 

implementation of the matrix multiplication routine could be used in normal MPI-based programs, 

provided that the distributed arrays are allocated using ARMCI_Malloc rather than, for example, the 

standard malloc call. This is not a significant restriction because in most applications, distributed arrays 

are created collectively anyway. On Linux clusters with Myrinet, to achieve maximum performance in the 

RMA communication ARMCI_Malloc internally attempts to register the memory used for the matrices 
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with the Myrinet GM network interface driver. If registration is successful, it enables the direct use of 

efficient zero-copy communication through the GM Myrinet protocols. Otherwise, either copy-based or 

on-the-fly dynamic memory registration protocols are used [34, 35]. MPICH-GM registers user 

communication buffers to enable zero-copy data transfers as well; these registrations are transparent to the 

user. The zero-copy communication enables the network interface card (NIC) to complete the data 

transfers without involving the host CPU. This is important for ensuring progress in the nonblocking 

communication while the host CPU is involved in computations. 

3. Multiplication Kernels for Rectangular and Transposed Matrices 

We developed several matrix multiplication kernels for achieving high performance for rectangular and 

transpose matrices. The appropriate algorithm is chosen based on the shapes of the matrices. For our 

analysis, we discuss the most representative and practical classes of rectangular and transpose matrix 

multiplication. 

3.1 Strategies for Rectangular Matrices 

For rectangular matrices, we select the most appropriate strategy based on the size and shape of the 

matrices. These strategies control how the load is distributed and how the parts of the matrices are 

accessed, i.e., they determine chunking of the data. SRUMMA supports three major chunk ordering 

schemes: first-order, second-order and third-order chunking. In first order chunking, a block of matrix A 

is decomposed column-wise into multiple chunks and a block of matrix B is decomposed row-wise as 

shown is Figure 6a. Let us assume the distribution in Figure 2. Process P0 needs blocks of matrix A from 

P0, P4, P8, and P12, and blocks of matrix B from P0, P1, P2, and P3. In the first step, P0 gets its local blocks 

and does the sequential dgemm locally. In the next step, P0 gets a block of matrix A and a block of matrix 

B from remote processes P4 and P1 respectively. If the buffer size (size of the temporary buffers) is big 

enough to hold these matrices, then the local computation of dgemm is a one step process. If the buffer is 

not big enough, then these matrix blocks are divided into chunks. If matrix A and B has s chunks each, 

then the number of steps to compute this block locally is in O(s). In second order chunking scheme 
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(Figure 6b), the block of matrix A is decomposed row-wise panels and block of matrix B is decomposed 

column-wise panels. Here the number of steps to compute dgemm locally is O(s2). In third-order chunking 

(Figure 6c), the blocks of matrix A and B are decomposed into square chunks. The number of steps to 

compute dgemm locally is O(s3) in this scheme. 

 

 

3.2 Rectangular Matrix Multiplication 

The various cases of rectangular matrix multiplication are represented in Figure 7: 

• m is small, n and k are large 

• k is small, m and n are large 

• n is small, m and k are large 

 

Case (i): m is small, n and k are large: For simplicity, let us assume the matrices A, B and C are 

distributed among the processes as shown in figure 8.  In the RMA get operation, if the temporary buffer 

is not big enough to fit the chunks from A or B, then the chunks can be divided into multiple panels row-

x= x=

x=

(a) (b) 

(c) 
Figure 6: (a) First-order chunking. (b) Second-order chunking. (c) Third-order chunking 

A  
B 

 
A 

 
B 

(a) (b) (c) 

Figure 7: (a) represents case i, i.e. m is small, n and k are large. (b) k is small, m and n are large. 
(c) n is small, m and k are large. 
 

B  
A 
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wise or column-wise as shown in figure 8a. In SRUMMA, a block distributed to a process is stored in 

column major order. Since n and k are large, the block corresponds to matrix B is decomposed into 

multiple panels column-wise, thus all the matrix elements that belong to a panel are stored in a contiguous 

fashion. Moreover, accessing row-wise panels of matrix A is relatively less expensive (as m is small) 

when compared to accessing row-wise panels of matrix B. Thus, the second-order chunking scheme can 

perform better here, as paneling of the matrix A and B correspond to the second-order chunks. 

 

 

Case (ii): k is small, m and n are large: Figures 9 illustrates this case. As matrices A and B are stored in 

column major order, and k is small and m is large, dividing matrix A column-wise performs better (Figure 

9b). 
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Figure 8: In a 4x4 process grid, process P0 needs blocks of matrix A from P0, P4, P8 and P12, and blocks 
of matrix B from P0, P1, P2 and P3 to compute C locally. (a) second order chunking is used if the chunks 
are too big to fit in the buffer. 
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Figure 9: In a 4x4 process grid, process P0 needs blocks of matrix A from P0, P4, P8 and P12, and 
blocks of matrix B from P0, P1, P2 and P3 to compute C locally. (a) First order chunking is used if 
the chunks are too big to fit in the buffer. 
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Case (iii): n is small, m and k are large: In this case, rectangular matrix multiplication is performed as 

illustrated in Figure 10. As m and n are large, it is better to use square shaped chunks for optimum 

performance as mentioned in section 2.1. In this case, decomposing the matrix into multiple rectangular 

panels (especially A) on networks that do not support good hardware support for noncontiguous data (i.e., 

scatter/gather) this results in multiple access to non-contiguous data, and so more expensive when 

compared to square chunks. Thus, this case uses the third order chunking scheme (Figure 10a).  

 

3.3 Transpose Matrix Multiplication Algorithm 

There are three flavors of transpose matrix multiplication: 1) C = AT. B 2)  C = A. BT and 3)  C = AT. BT. 

The transposed algorithm is shown in Figure 11. Recall from Figure 2 that in order to compute a block of 

matrix C locally, process P0 needs blocks of matrix A from P0, P4,, P8, and P12, and blocks of matrix B 

from P0, P1, P2, and P3. Let us consider the case C = AT. B, where A is transposed and B is not. In this 

case, process P0 gets blocks of matrix A from P0, P1, P1, and P3, and blocks of matrix B from P0, P1, P2, 

and P3 as shown in figure 11. After getting the first set of blocks, process P0 computes local transpose 

matrix multiply using the vendor optimized sequential BLAS library. Thus, SRUMMA transposes from 

process point of view rather than from matrix point of view (i.e. transposing the entire matrix, which is 

= x

Figure 10: In a 4x4 process grid, process P0 needs blocks of matrix A from P0, P4, P8 and 
P12, and blocks of matrix B from P0, P1, P2 and P3 to compute C locally. (a) Third order 
chunking is used if the chunks are too big to fit in the buffer. 
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expensive and leads to poor scalability). 

4. Experimental Results 

In the previous paper [1] we discussed the effectiveness of the SRUMMA for square matrices. In this 

section, we present how the optimizations for rectangular and transpose matrices perform in practice. The 

numerical experiments were conducted on the following platforms: 

• Linux cluster based on dual 2.4-GHz Intel Xeon nodes and Myrinet-2000 network 

• SGI Altix 3000, shared-memory NUMA system with 128 1.5-GHz Intel Itanium-2 CPUs at 

Pacific Northwest National Laboratory. 

For the comparison, we used the pdgemm routine from PBLAS/ScaLAPACK Version 1.7, and SUMMA. 

However, to save space we are reporting ScaLAPACK results only, as it is the most commonly used 

parallel linear algebra library. Moreover, SUMMA is used in practice in ScaLAPACK/PBLAS [20]. The 

same dgemm (double precision serial matrix multiplication) routines from vendor optimized math library 

(-lscs for Altix, -lmkl for Xeon) were used in all three parallel algorithms. Optimum block sizes were 

chosen empirically for all matrix sizes and processor counts. Section 4.3 presents the performance of 

communication protocols including the potential for overlapping communication with communication.  

4.1 Rectangular Matrices 

= x

Figure 11: transpose matrix multiply C = AT. B. In a 4x4 process grid, process P0 needs blocks of 
matrix A from P0, P1, P2 and P3 (transpose), and blocks of matrix B from P0, P1, P2 and P3 to compute C 
locally. 
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As mentioned in Section 3.2, SRUMMA selects the appropriate matrix multiplication kernel based on the 

shape of the matrices. For example, SRUMMA selects the strategy with second order chunking for the 

matrices represented in Figure 7a. To validate our theoretical analysis, we experimentally evaluated the 

performance of all the cases of rectangular multiplication (in Section 3.2) with different matrix 

multiplication kernels. Matrices with larger dimension 4000 and smaller dimension 1000 are chosen. This 

medium size dimension (i.e. 4000) is chosen as computation pre-dominates communication in larger size 

matrices, and communication pre-dominates computation in smaller size matrices, for our selected 
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Figure 12: Performance of matrix multiplication with 1st, 2nd and 3rd order chunking for different matrix 
shapes on Linux cluster (left) and SGI Altix (right) 
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processor range (64 processors). Consider a matrix multiplication operation C = AB, where the order of 

matrices A, B, and C is m x k, k x n, and m x n, respectively. The performance of 1st, 2nd and 3rd order 

matrix multiplication kernels for various matrix shapes is shown in Figure 15. For example, second order 

matrix multiplication kernel in SRUMMA performs better for matrix multiplication of shape m=1000, 

n=4000 and k=4000 (Figure 12).  

We also include performance results of SRUMMA and ScaLAPACK. Several tests involving various 

sizes of matrices ranging in size from 600 to 8000 and of different shapes were conducted. Due to the 

space limitations, we report results for the following cases:  

i. m = 2000; n = 2000; k = 1000 

ii. m = 1000; n = 1000; k = 2000 

iii. m = 4000; n = 4000; k = 1000 

iv. m = 1000; n = 1000; k = 4000 

Figures 13 and 14 show the performance of SRUMMA and ScaLAPACK on a cluster (Linux) and a 

shared memory system (Altix), and indicate that SRUMMA performs better than ScaLAPACK in most of 

the cases. SRUMMA obtained a peak performance of 620 GFLOP/s (4.8 GFLOP/s per processor) on the 

SGI Altix with 128 processors, for case (i). 

4.2 Transpose Matrices 

We also measured the performance of matrix multiplication using SRUMMA and ScaLAPACK for 

transposed matrices. Three variants were considered: C = ATB (i.e., A is transposed, B is not), C = ABT 

and C = ATBT. C = ATB, C = ABT and C = ATBT are referred to as TN, NT, and TT, respectively in 

Figures 13 and 14. As shown in Figures 13 and 14, SRUMMA consistently outperformed 

ScaLAPACK/PBLAS pdgemm on clusters and shared memory systems in most of the cases. SRUMMA 

scaled well when the number of processors and/or the problem size was increased, thus proving the 

algorithm is cost-optimal. In all three cases, SRUMMA took advantage of the shared memory 

communication (in the case of shared memory systems), and zero-copy and non-blocking RMA protocols 

(in the case of the cluster), to achieve high performance. 
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Figure 13: Performance of transpose cases (TN, NT, TT) and rectangular matrices on the Linux cluster 
(New Algorithm is SRUMMA). 
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The Linux results in Figure 14 indicate that performance degrades for smaller matrices on larger 
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Figure 14: Performance of transpose cases (TN, NT, TT) and rectangular matrices on Altix. 
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processor counts. This is because, for small matrix sizes and larger processor counts, the potential for 

overlapping is limited. Moreover, for short message ranges, the get operation involves request and reply, 

which leads to a higher latency.  

4.3 Impact of communication protocols 

First, we investigated the performance of MPI send/receive operations and the ARMCI get operation on 

the Linux cluster. SGI Altix is not included in this study as we directly access shared memory in our 

matrix multiplication. Since shared memory is the fastest communication protocol available on shared 

memory systems, it is not surprising that SRUMMA outperforms pdgemm algorithm implemented on top 

of message passing. However, to understand the performance differences between the two versions of 

matrix multiplication algorithm on clusters we performed several tests to measure the role of the 

underlying communication protocols. 

Figure 16 shows that performance of these protocols is close, with the exception of the short message 

range (in principle, the get operation involves request and reply which understandably leads to a higher 

latency). The MPI timings correspond to half of the round-trip message exchange. Unlike the message-

passing implementation of the matrix multiplication in ScaLAPACK, our algorithm is using nonblocking 

RMA, which offers a potential for overlapping communication with computations [38]. We measured this 

potential for ARMCI and MPI on our cluster platform (see Figure 15). In comparison to MPI non-

blocking isend/irecv, ARMCI non-blocking get offers almost 99% overlap for medium- and larger-sized 

messages. Similarly to other studies [39, 40], we found the potential degree of overlapping MPI 

communication with computations to be less favorable: it sharply decreases after a certain message size 

(16Kb) as MPI switches to the Rendezvous protocol [29]. Therefore, the use of nonblocking protocols in 

SRUMMA is expected to be beneficial when the problem size and processor count is increased, due to a 

high degree of overlapping of communication with computations.  

Our next communication-related test attempted to evaluate to what degree zero-copy RMA 

communication affects the performance of matrix multiplication. This communication approach allows 

the remote CPU to work on its own computations rather than be interrupted and involved in data copying 
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on behalf of another processor. On the Myrinet with GM 1.X, ARMCI is implemented using the GM put 

operation and pthreads [35]. The new matrix multiplication algorithm was tested when enabling and 

disabling the zero-copy implementation [29] of the ARMCI get operation. Figure 17 shows that zero-copy 

protocol is very important for performance of the new algorithm. This test is performed on the Linux 

cluster with Myrinet, using: 

• blocking and non-blocking communications, and  

• zero-copy protocol disabled and enabled.  
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Figure 15: Degree of overlap as a function of message size in ARMCI and MPI on Linux cluster 
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These results show that the performance benefit of using nonblocking communications is amplified when 

the zero-copy protocol is enabled. This is because the remote host CPU cycles are not taken away when 

overlapping communication with computation since the NICs are able to transfer the data between the 

user buffers across the network. We were able to overlap more than 90% of the communication with 

computation, thus the degree of overlapping (�) is less than 10%. Therefore, Equation 3 reduces to: 

Tpar_rma = PtPt
P

N
P

N
sw +��

�

�
��
�

�
+

23

)1.0(  

Tpar_rma = ζ+
P

N 3

, where � << 
P

N 3

for medium/larger problem sizes. 

5. Summary and Conclusions 

This paper described SRUMMA parallel algorithm for a dense matrix multiplication with extensions to 

deal efficiently with rectangular and transposed matrices.  Unlike the other leading parallel algorithms 

based on message passing, the current approach exploits shared memory and nonblocking remote memory 

access protocols on clusters and shared memory systems. Overall, the algorithm achieved consistent and 

substantial performance gains over the parallel matrix multiplication in ScaLAPACK for transposed and 

rectangular matrices. Some of its best cases are presented in Table 1. Our plans for future work include 

multiplication of matrices with irregular distribution. 

 

Matrix Size Processors Case (Platform) SRUMMA 
(GFLOP/s) 

ScaLAPACK 
(GFLOP/s) 

600x600 128 C=ATBT(Linux) 16.64 6.4 
4000x4000 128 C=ATBT (Altix) 369 24.3 

m=4000;n=4000; 
k=1000 

(Rectangular) 
128 

 

160 107.5 

m=1000;n=1000; 
k=2000 

(Rectangular) 
64 

 

288 17.28 

 
Table 1: SRUMMA best cases. 

 

(Linux) 

(Altix) 
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