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Abstract. Advancements in high-performance networks (Quadrics, Infiniband 
or Myrinet) continue to improve the efficiency of modern clusters.  However, 
the average application efficiency is as small fraction of the peak as the sys-
tem’s efficiency. This paper describes techniques for optimizing application 
performance on Linux clusters using Remote Memory Access communication 
protocols. The effectiveness of these optimizations is presented in the context of 
an application kernel, dense matrix multiplication. The result was achieving 
over 10 teraflops on HP Linux cluster on which LINPACK performance is 
measured as 8.6 teraflops. 

1 Introduction 

Linux clusters offer openness, flexibility, low cost, and reliability, and achieve high 
efficiency and high productivity. The high-performance networks, such as Myrinet, 
Quadrics, and InfiniBand improve a cluster's overall efficiency over Ethernet-based 
networks. However, the average application efficiency is still only a small fraction of 
the peak. Even for computationally intensive benchmarks, such as LINPACK, those 
do not stress the network as much as many scientific applications, approaching peak 
performance is difficult.  For example, the theoretical peak performance (Rpeak) of the 
HP Linux cluster at Pacific Northwest National Laboratory [1] and the IBM Linux 
cluster at Barcelona Supercomputer Center [1] is 11.6 and 31.4 teraflops respectively, 
where as the maximum LINPACK [2] performance (Rmax) is only 8.6 and 20.5 tera-
flops respectively. Most of the scientific applications achieve performance lower than 
Rmax  [3]. 

This problem has its sources in multiple areas including hardware and software. 
One of the primary factors degrading the application performance is the growing gap 
between 1) CPU and network speed 2) CPU and memory speed[4]. In spite of signifi-
cant progress in the commodity networks, the gap between processor speed and inter-
processor communication performance is growing. For example, in 1990 on the 
NCUBE/2 massively parallel system employing a 1MFLOP/s processor and 2.5 MB/s 
network bandwidth, the message-passing latency ranged from 65-130�s. On the other 
hand, the latest 1.5 GHz Itanium-2 processor is rated at 6GFLOP/s and is employed in 



Linux clusters connected with networks (e.g., Quadrics QsNetII) that support ~3�s la-
tency and 850 MB/s network bandwidth at the MPI [5] layer. During the last 14 years, 
the processor speed and network bandwidth is improved by a factor of 104 and 102-4 
respectively, and latency is improved only by a factor of 10. This growing gap is not 
specific to commodity clusters only. For example, the Cray X1 processor (MSP) 
mode is rated at 12.8GFLOP/s while the MPI latency is just ~9 �s. The proces-
sor/memory performance gap is growing at a similar rate. Each memory access cost 
on average 10 or even hundreds of processor cycles[4]. Although increasingly large 
caches can help reduce the performance gap, they only work for applications that can 
reuse cached data and/or exploit data locality. Therefore, this growing gap between 
CPU-network and CPU-memory is a fundamental problem that requires attention in 
the design of communication models as well as scalable parallel algorithms. 

In this paper, we discuss techniques for addressing some of the implications of the 
technology trends, and illustrate how they could be used in practice by using an ex-
ample of the dense matrix multiplication operation. We also advocate the remote 
memory access (RMA) communication model because of its simplicity and good 
hardware support on modern networks it possesses certain characteristics important 
for reducing the performance gap between system peak and application performance. 
This gap can be reduced by combining quality implementation of the communication 
interfaces with algorithms capable of exploiting locality and using optimal types of 
memory for its communication buffers. The techniques and protocols discussed in this 
paper are: 1) zero-copy protocol 2) network latency hiding through effective non-
blocking communication 3) explicit control of data locality and task mapping e.g., ex-
ploiting shared memory within SMP nodes and RMA across network 4) reducing 
communication contention in access to the data. 

In this paper, we present a case where a parallel matrix multiplication kernel, effec-
tively uses these techniques to achieve improved performance on Linux clusters. In 
many scientific applications as well as in HPL (high performance LINPACK), paral-
lel dense matrix multiplication is one of the most important linear algebra operations. 
The experimental results on the HP cluster with Quadrics QsNetII network demon-
strate that incorporating these techniques and protocols in the matrix multiplication 
operation indeed offer real and measurable performance improvements and help close 
the gap between peak and observed performance. For example, on 1849 processors, 
we achieved efficiency of 88.2% of the theoretical peak performance on the HP Linux 
cluster at PNNL, where as the maximum LINPACK efficiency recorded on this clus-
ter is only 74%. Our parallel matrix multiplication uses sequential dgemm from ven-
dor optimized math library (HP-mlib) for Itanium2, which performs at 93.5% dgemm 
efficiency. 

This paper is organized as follows: Section 2 outlines RMA communication model. 
Section 3 described the techniques and fast communication protocols that can be used 
in an application to achieve optimum performance. Section 4 describes a matrix mul-
tiplication kernel and how these techniques are incorporated in this kernel, and pre-
sents experimental results, and the paper is concluded in Section 5. 



2 RMA Communication Model 

Remote memory access (RMA) operations facilitate an intermediate programming 
model between message passing and shared memory. This model combines some ad-
vantages of shared memory, such as direct access to shared/global data, and the mes-
sage-passing model, namely the control over locality and data distribution. Certain 
types of shared memory applications can be implemented using this approach. In 
some other cases, remote memory operations can be used as a high-performance al-
ternative to message passing [6]. On many modern platforms, RMA is directly sup-
ported by hardware and is the lowest-level and often most efficient communication 
paradigm available [7]. RMA is sometimes considered a form of message passing; 
however, an important difference over the MPI-1 message-passing model is that 
RMA does not require explicit receive operation and thus offers increased asynchrony 
of data transfers (see Figure 1). 

 
In our experiments, we used a portable RMA interface called aggregate remote 

memory copy interface (ARMCI). A portable RMA interface is needed both for de-
veloping applications and for creating a communication layer for libraries and com-
piler run-time systems, especially for the (re)emerging global address space lan-
guages. ARMCI  was developed to serve the latter purpose [7-9] by complementing 
MPI-2 [10], which targets application developers and imposes certain rules and re-
strictions on data access (e.g., window serialization, access epochs) or progress rules 
that are absent in vendor-specific interfaces such as the Cray SHMEM [11], IBM 
LAPI [12], and Quadrics Elan [13].  

3 Techniques for Optimizing Communication Performance 

3.1 Asynchronous RMA Communication 

The traditional RMA communication facilitates data transfers between a buffer of a 
local processor and another location in the remote processor memory.  However, co-
operation with the remote processor is not required to complete the data transfer.  The 
RMA model is closely aligned with RDMA capabilities of modern networks (Infini-
band, Myrinet, VIA, Elan), which provide hardware support to read from or write to 
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Fig. 1. Taxonomy of communication models. 



remote memory locations.  With the exception of Elan, which offers virtual memory 
RDMA, the networks listed above require the source and destination buffers to be 
registered with the network adapter in advance of the communication. Registration al-
lows the network adapter driver to establish virtual memory translations and lock the 
buffers in physical memory. RDMA is a simple communication model that enables 
network adapters on two ends of the network to complete data transfer asynchro-
nously and avoid remote-host processing.  This simplicity makes RDMA, in most 
cases, the highest performance data-transfer mechanism available. If communication 
buffers are registered, RMA operations such as put or get map directly to the RDMA 
write or put operations supported by the hardware.  Since the RMA model does not 
require a remote processor to match message tags or deal with early message arrivals, 
as required in message passing, RMA can achieve higher performance on these net-
works, as well. 

 

Fig. 2. (a) Bandwidth in ARMCI Put/Get in comparison to Raw Elan4 Get/Put and MPI 
Send/Recv on the Elan4 cluster. (b) Percentage overlap for increasing message sizes for MPI 
and ARMCI on various platforms (SP, Elan4, GM). 
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The first benchmark is designed to demonstrate the performance of ARMCI Put 
and Get operations, which is based on RMA programming model, on the HP IA64 
Linux cluster with Quadrics QsNetII network. It also demonstrates the effectiveness of 
the low overhead implementation of these operations over the native communication 
protocols (Elan4). Figure 2a compares the performance of ARMCI Put/Get with MPI 
Send/Recv and the Native RDMA Put/Get on the Quadrics Elan-4 cluster. The 
benchmark used here clearly shows that ARMCI operations introduce very low over-
head over the native Quadrics protocols. ARMCI does quite well compare to MPI 
since it avoids the usual tag-matching overheads that the message-passing libraries 
have to provide. 

3.2 Latency Hiding 

Latency hiding (or latency tolerance) can be accomplished through different tech-
niques, including overlapping communication with computation [14] by the use of 
nonblocking communication [15, 16] and zero-copy protocols. Another technique, is 
coalescing small put/get messages (i.e., aggregation) [17] into larger ones to eliminate 
startup cost for as many messages as possible and to improve network utilization. The 
availability of non-blocking RMA operations presents additional opportunities for 
overlapping data transfers and computations. Although pre-fetching and post-storing 
instructions are often supported by the shared memory hardware and are exploited by 
compilers to overlap computations with data movement, a scientific programmer on 
shared memory systems typically faces difficulties when attempting to manage ex-
plicitly overlapping of computations and communication due to the lack of precise 
APIs. Such explicit non-blocking APIs are present in the most RMA interfaces.  

3.2.1 Non-blocking Communication Interfaces 
Nonblocking operations initiate a communication call and then return control to the 
application. The user who wishes to exploit nonblocking communication as a tech-
nique for latency hiding by overlapping communication with computation implicitly 
assumes that progress in communication can be made in a purely computational phase 
of the program execution when no communication calls are made. Unfortunately, that 
assumption is often not satisfied in practice in MPI-- the availability of nonblocking 
API does not guarantee that overlapping communication with computation is always 
possible [18]. The RMA interfaces of the high performance networks (GM, ELAN, 
LAPI) include nonblocking interfaces and provide good potential for overlapping 
communication with computations. 

We conducted a test to demonstrate the effectiveness of RMA non-blocking com-
munications. The overlap microbenchmark deals with overlapping communication 
with computation, and it was performed in the context of available RMA based net-
work protocols (IBM-SP (LAPI), Linux cluster with Myrinet (GM) and Quadrics 
(Elan4) interconnects). The percentage overlap is measured as the amount of time of a 
nonblocking (data transfer) call that can be overlapped with useful computation with-
out increasing the overall benchmark time. We consider this a good measure of the ef-
fectiveness of a non-blocking call. The computation is incorporated in the program in 
the form of a delay. Increasing computation is gradually inserted between the initiat-



ing nonblocking get call and the wait completion call. As we keep increasing the 
computation, at some point the sum of the nonblocking call issue overhead and com-
putation would exceed the idle CPU time, so the total benchmark running time would 
increase. This point gives us the maximum possible overlap. We performed this ex-
periment on two nodes, with one node issuing the nonblocking get for data located on 
the other and then waiting for the transfer to be completed in the wait call. From Fig-
ure 2b, we observe that the RMA model offers a higher level of overlap on these net-
works. On Elan4, the overlap efficiency is not close to 100% up to 64KB because, the 
latency to transfer data up to 64KB is very low (e.g. 13 micro seconds for 8K message 
size) and overhead of the non-blocking and wait call initiation times with respect to 
latency is high (approximately 3 microseconds). 

3.2.2 Zero-Copy Protocols 
The zero-copy communication is increasingly important due to the growing gap be-
tween processor and memory speeds: memory b/w is also a precious resource shared 
in SMP clusters between multiple processors. When implemented it allows remote 
CPU to work on its own computations rather than be interrupted and involved in data 
copying on behalf of another processor (see Figure 3b). RMA model is well suited for 
zero-copy implementation on the networks such as Quadrics, Infiniband and Myrinet, 
since both source and destinations are known and memory buffers can be preregis-
tered. In that case put/get operations are handled by DMA engines on the NIC, thus 
avoiding multiple memory copies (see Figure 3a) on local as well as on the remote 
CPU. Thus there is more opportunity for overlapping communication as both the local 
and remote CPU can do useful computations while data transfer is taking place.  

 
For example, the communication protocols used to optimize blocking transfers of 

data from non-registered memory by pipelined copy and network communication 
through a set of registered memory buffers [7] can achieve very good performance by 
tuning the message fragmentation in the pipeline [19]. However, pipelining is not ef-
fective for non-blocking communication as memory copy requires the active host 
CPU involvement and therefore reduces the potential for effective overlapping com-
munication with computation. To increase the overlap, we expanded the use of direct 
(zero-copy) protocols on networks that require memory registration, such as Myrinet.  

��
Copy-based, high CPU involvement  
��

Zero-copy, low CPU involvement e.g., 
Quadrics 

Fig. 3. Data Movement Schemes: (a) copy-based protocol and (b) zero-copy protocol. 
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3.3 Data Locality and Shared Memory 

The fastest communication protocols available on modern high-performance clusters 
are shared memory within the SMP nodes and RDMA between the nodes. To take full 
performance advantage of these protocols, exploiting data locality information is 
critical in implementation of communication protocols but we also advocate it at the 
application level. Specifically, with appropriate task mapping information, applica-
tions can in fact use shared memory to communicate between tasks within the same 
node and RMA between the nodes. 
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Fig. 4. Performance of get operation between RDMA read from registered memory and within 
the SMP node using shared memory. 

Performance benefits of using registered shared memory is demonstrated below for 
a Linux cluster employing dual 1GHz Itanium-2 nodes interconnected with the Mel-
lanox, Infiniband “Cougar” cards.  Figure 4 shows the performance of a get operation 
implemented on top of shared memory and implemented using an RDMA read opera-
tion (memory is registered), both within the SMP node. Because a single network 
adapter must move the data across the PCI bus twice within an SMP node, the RDMA 
read bandwidth is about half of the rate for that operation across the network. The 
shared memory communication profile is slightly affected by caching of data and di-
rectly follows performance of the memory copy operation. 

4 Example - a parallel matrix multiplication 

In the previous section, optimization mechanisms to improve the overall performance 
of scientific applications were discussed along with system level tests to validate the 
effectiveness of the optimization mechanisms and advanced communication proto-
cols. The effectiveness of these protocols is evaluated by incorporating these tech-
niques in the context of an RMA based parallel matrix multiplication algorithm. For 
the comparison, we used the pdgemm routine from PBLAS/ScaLAPACK Version 1.7, 
which uses message passing communication model. 



 
For many scientific applications, matrix multiplication is one of the most important 

linear algebra operations. At the high level, the parallel matrix multiplication algo-
rithm follows the serial block-based matrix multiplication (see Figure 5 and 6) by as-
suming the regular block distribution of the matrices A, B, and C. Each process ac-
cesses the appropriate blocks of the matrices A and B to multiply them together with 
the result stored in the locally owned part of matrix C. 

In principle, the overall sequence of block matrix multiplications can be similar to 
that in Cannon’s algorithm. However, unlike Cannon’s algorithm, where skewed 
blocks of matrix A and B are shifted using message-passing to the logically neighbor-
ing processors, our approach fetches these blocks independently, as needed, without 
requiring any coordination with the processors that own the matrix blocks. This is 
possible thanks to the use of RMA or shared memory access protocols. In addition, 
the specific sequence in which the block matrix multiplications are executed is deter-
mined dynamically at run time to more efficiently schedule and overlap communica-
tion with computations. The absence of sender-receiver synchronization/coordination 
(such in Cannon’s algorithm) based on message passing makes the overall algorithm 
more asynchronous and thus more suited for the execution environments where the 
computational threads share a CPU with other processes and system daemons (e.g., on 
commodity clusters). This is because synchronization amplifies performance degrada-

Fig. 6. Matrix distribution example. In a 4 x 4 process grid, process P00 needs blocks of matrix 
A from P00, P01, P02, and P03, and blocks of matrix B from P00, P10, P20, and P30. 
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1:   for i=0 to s-1 { 

2:      for j=0 to s-1 { 

3:         Initialize all elements of Cij to zero 
(optional) 

4:         for k=0 to s-1 { 

5:    Cij = Cij + Aik×Bkj 

6:         } 

7:      } 

8:   } 

Fig. 5. Block matrix multiplication for matrices N×N and block size N/s × N/s. 



tions due to the nonexclusive use of the processor by the application. In this algo-
rithm, we start computations by accessing matrix A and B blocks within the same 
SMP node through shared memory as suggested in 3.3 while nonblocking RMA calls 
are issued for getting matrix blocks on remote nodes.  

4.1 Role of Zero-copy and Non-blocking Protocols 

Zero-copy non-blocking is used in this application to transfer matrix blocks, the 
communication can be overlapped with computation, as shown in Figure 7. To dem-
onstrate the effectiveness of zero-copy protocol, we evaluated what degree zero-copy 
RMA communication affected the performance of matrix multiplication. As zero-
copy protocol is default in Quadrics elan4 network, we used Myrinet to investigate 
the role zero-copy protocols play in performance of the matrix multiplication. The 
new matrix multiplication algorithm was tested with enabling and disabling the zero-
copy implementation [19] of the ARMCI get operation. Figure 8 shows that zero-copy 
protocol is very important for performance of the new algorithm. This test is per-
formed on the Linux cluster with Myrinet, using 1) blocking and non-blocking com-
munications, and 2) zero-copy protocol disabled and enabled. These results show that 
the performance benefit of using nonblocking communications is amplified when the 
zero-copy protocol is enabled. This is because; the remote host CPU cycles are not 
taken away when overlapping communication with computation since the NICs are 
able to transfer the data between the user buffers across the network. We were able to 
overlap more than 90% of the communication with computation, thus improving the 
overall application performance. 

 

 

A B C 

Computation  

Communica-
tion 

Fig. 7. Using two sets of buffers to overlap communication and computation in matrix multi-
plication.  



 

4.2 Communication Contention Management 

An effective communication pattern in parallel algorithms reduces the network comu-
nication contention on clusters and thus effectively utilizing network bandwidth. In 
our parallel matrix multiplication algorithm we used a network contention algorithm 
(NCA) as shown in Figure 9. For example, consider a matrix A that is distributed on a 
4 x 4 processor grid (as shown in Figure 9 (1) on a 4-way SMP cluster, i.e., node 1 
has processors P00, P10, P20, and P30; node 2 has P01, P11, P21, and P31; etc., as shown 
in Figure 9 (2). To compute its locally owned matrix C, a processor needs the corre-
sponding rows and columns of matrix A and B respectively, as shown in Figure 7. i.e., 
processor P00 needs blocks of matrix A from P00, P01, P02, and P03, and blocks of ma-
trix B from P00, P10, P20, and P30. If the network contention algorithm is not used, 
processors P00, P10, P20, and P30 get a block from P01, P11, P21, and P31, respectively in 
the first step. Thus all the 4 processors are sharing the network bandwidth between 
node1 and node2. If the diagonal shift algorithm is used instead, then processors P00, 
P10, P20, and P30 get a block from P00 (node0), P11 (node1), P22 (node2 and P33 (node3, 
respectively in the first step, thus reducing the contention. Figure 9 (3) represents the 
pattern of getting blocks by processors in node 1. 

The communication load in the multiplication kernel is spread uniformly using a 
network contention algorithm as shown in Figure 9, thus improving network band-
width utilization. Figure 10 shows the effect of incorporating network contention al-
gorithm (NCA) in blocking and non-blocking flavors of matrix multiplication on an 
8000 size matrix multiplication on Quadrics HP Linux cluster at PNNL. 
PBLAS/ScaLAPACK (which uses MPI) matrix multiplication numbers are also 
shown in the Figure 10. From Figure 10, it is demonstrated that as the number of 
processors increase the non-blocking and NCA version of matrix multiplication scales 
extremely well when compared to others.  As the number of processors increase, even 
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the blocking with NCA version of matrix multiplication performs better than the non-
blocking version without NCA. 

 

 

4.3 Performance and Scalability  

Experiments were conducted for various problem (matrix) sizes and processor counts 
on the HP Linux cluster based on 980 dual 1.5-GHz Intel Itanium2 nodes and Quad-
rics QsNetII network at PNNL. The (square) matrix sizes range from 2000 till 40000 
for up to 1849 processors. Due to operational constraints, we could not run on the 
whole machine (1960 processors). Figure 11 shows the performance numbers of the 
optimized matrix multiplication (called SRUMMA [20, 21]) and pdgemm from 
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Fig. 9. Pattern of getting blocks on a 4-way SMP cluster to reduce communication contention. 

Fig. 10. Effect of network contention algorithm (NCA) in parallel matrix multiplication. 
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PBLAS/ScalaPACK. SRUMMA achieved a maximum of 9.7 teraflops on 1849 proc-
essors, where as PBLAS achieved lower than 8 teraflops. For a problem size of 40000 
on 1849 CPUs, our implementation achieves a parallel dgemm efficiency of 88.2% of 
the theoretical machine peak performance on the HP Linux cluster at PNNL, where as 
the PBLAS pdgemm efficiency is 74%. Extrapolating these numbers for 1960 proces-
sors, we would get 10.3 teraflops, which recorded a maximum LINPACK perform-
ance is 8.6 teraflops. Thus, using advanced communication protocols optimal applica-
tion performance can be obtained on Linux Clusters. The vendor optimized sequential 
dgemm (mlib from HP) is 92.9%. 

Figure 12 presents the performance differences for square matrices, no transpose; 
matrix ranks range from 200 to 8000 on Quadrics Linux cluster. As shown in Figure 
12, the SRUMMA outperforms pdgemm and scales better, with the most profound 
gains seen are due to the incorporation of these optimizations. For example on the 
Linux cluster, it is faster by 20% to 60% in most of the cases. In most of the cases, we 
were able to overlap 90% of the communication with computation. 

 

5 Conclusion 

This paper described communication performance optimizations that are relevant to 
modern clusters. We showed impact of these optimizations on performance of parallel 
matrix multiplication kernel. It achieved 10.3 teraflops on a 8.6 teraflop (Rmax) Linux 
supercomputer. For a problem size of 40000 on 1849 CPUs, parallel dgemm effi-
ciency of 88.2% of the theoretical peak performance was measured, whereas the 

 

Parallel Matrix Multiplication on the HP/Quadrics Cluster at PNNL
Matrix size: 40000x40000

Efficiency 92.9% w .r t. serial algorithm and 88.2% w .r.t. machine peak on 1849 CPUs
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PBLAS pdgemm efficiency was 74%. We found remote memory access (RMA) 
communication model valuable because of its simplicity and good hardware support 
on modern networks it possesses certain characteristics important for reducing the 
performance gap between system peak and application performance. 
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Fig. 12. SRUMMA vs. PBLAS pdgemm. 
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