
Optimizing Performance on Linux Clusters Using
Advanced Communication Protocols: How 10+ Teraflops
Was Achieved on a 8.6 Teraflops Linpack-Rated Linux

Cluster

Manojkumar Krishnan and Jarek Nieplocha

Computational Sciences and Mathematics Division
Pacific Northwest National Laboratory

Abstract. Advancements in high-performance networks (Quadrics, Infiniband
or Myrinet) continue to improve the efficiency of modern clusters. However,
the average application efficiency is as small fraction of the peak as the sys-
tem’s efficiency. This paper describes techniques for optimizing application
performance on Linux clusters using Remote Memory Access communication
protocols. The effectiveness of these optimizations is presented in the context of
an application kernel, dense matrix multiplication. The result was achieving
over 10 teraflops on HP Linux cluster on which LINPACK performance is
measured as 8.6 teraflops.

1 Introduction

Linux clusters offer openness, flexibility, low cost, and reliability, and achieve high
efficiency and high productivity. The high-performance networks, such as Myrinet,
Quadrics, and InfiniBand improve a cluster's overall efficiency over Ethernet-based
networks. However, the average application efficiency is still only a small fraction of
the peak. Even for computationally intensive benchmarks, such as LINPACK, those
do not stress the network as much as many scientific applications, approaching peak
performance is difficult. For example, the theoretical peak performance (Rpeak) of the
HP Linux cluster at Pacific Northwest National Laboratory [1] and the IBM Linux
cluster at Barcelona Supercomputer Center [1] is 11.6 and 31.4 teraflops respectively,
where as the maximum LINPACK [2] performance (Rmax) is only 8.6 and 20.5 tera-
flops respectively. Most of the scientific applications achieve performance lower than
Rmax [3].

This problem has its sources in multiple areas including hardware and software.
One of the primary factors degrading the application performance is the growing gap
between 1) CPU and network speed 2) CPU and memory speed[4]. In spite of signifi-
cant progress in the commodity networks, the gap between processor speed and inter-
processor communication performance is growing. For example, in 1990 on the
NCUBE/2 massively parallel system employing a 1MFLOP/s processor and 2.5 MB/s
network bandwidth, the message-passing latency ranged from 65-130�s. On the other
hand, the latest 1.5 GHz Itanium-2 processor is rated at 6GFLOP/s and is employed in

Linux clusters connected with networks (e.g., Quadrics QsNetII) that support ~3�s la-
tency and 850 MB/s network bandwidth at the MPI [5] layer. During the last 14 years,
the processor speed and network bandwidth is improved by a factor of 104 and 102-4
respectively, and latency is improved only by a factor of 10. This growing gap is not
specific to commodity clusters only. For example, the Cray X1 processor (MSP)
mode is rated at 12.8GFLOP/s while the MPI latency is just ~9 �s. The proces-
sor/memory performance gap is growing at a similar rate. Each memory access cost
on average 10 or even hundreds of processor cycles[4]. Although increasingly large
caches can help reduce the performance gap, they only work for applications that can
reuse cached data and/or exploit data locality. Therefore, this growing gap between
CPU-network and CPU-memory is a fundamental problem that requires attention in
the design of communication models as well as scalable parallel algorithms.

In this paper, we discuss techniques for addressing some of the implications of the
technology trends, and illustrate how they could be used in practice by using an ex-
ample of the dense matrix multiplication operation. We also advocate the remote
memory access (RMA) communication model because of its simplicity and good
hardware support on modern networks it possesses certain characteristics important
for reducing the performance gap between system peak and application performance.
This gap can be reduced by combining quality implementation of the communication
interfaces with algorithms capable of exploiting locality and using optimal types of
memory for its communication buffers. The techniques and protocols discussed in this
paper are: 1) zero-copy protocol 2) network latency hiding through effective non-
blocking communication 3) explicit control of data locality and task mapping e.g., ex-
ploiting shared memory within SMP nodes and RMA across network 4) reducing
communication contention in access to the data.

In this paper, we present a case where a parallel matrix multiplication kernel, effec-
tively uses these techniques to achieve improved performance on Linux clusters. In
many scientific applications as well as in HPL (high performance LINPACK), paral-
lel dense matrix multiplication is one of the most important linear algebra operations.
The experimental results on the HP cluster with Quadrics QsNetII network demon-
strate that incorporating these techniques and protocols in the matrix multiplication
operation indeed offer real and measurable performance improvements and help close
the gap between peak and observed performance. For example, on 1849 processors,
we achieved efficiency of 88.2% of the theoretical peak performance on the HP Linux
cluster at PNNL, where as the maximum LINPACK efficiency recorded on this clus-
ter is only 74%. Our parallel matrix multiplication uses sequential dgemm from ven-
dor optimized math library (HP-mlib) for Itanium2, which performs at 93.5% dgemm
efficiency.

This paper is organized as follows: Section 2 outlines RMA communication model.
Section 3 described the techniques and fast communication protocols that can be used
in an application to achieve optimum performance. Section 4 describes a matrix mul-
tiplication kernel and how these techniques are incorporated in this kernel, and pre-
sents experimental results, and the paper is concluded in Section 5.

2 RMA Communication Model

Remote memory access (RMA) operations facilitate an intermediate programming
model between message passing and shared memory. This model combines some ad-
vantages of shared memory, such as direct access to shared/global data, and the mes-
sage-passing model, namely the control over locality and data distribution. Certain
types of shared memory applications can be implemented using this approach. In
some other cases, remote memory operations can be used as a high-performance al-
ternative to message passing [6]. On many modern platforms, RMA is directly sup-
ported by hardware and is the lowest-level and often most efficient communication
paradigm available [7]. RMA is sometimes considered a form of message passing;
however, an important difference over the MPI-1 message-passing model is that
RMA does not require explicit receive operation and thus offers increased asynchrony
of data transfers (see Figure 1).

In our experiments, we used a portable RMA interface called aggregate remote

memory copy interface (ARMCI). A portable RMA interface is needed both for de-
veloping applications and for creating a communication layer for libraries and com-
piler run-time systems, especially for the (re)emerging global address space lan-
guages. ARMCI was developed to serve the latter purpose [7-9] by complementing
MPI-2 [10], which targets application developers and imposes certain rules and re-
strictions on data access (e.g., window serialization, access epochs) or progress rules
that are absent in vendor-specific interfaces such as the Cray SHMEM [11], IBM
LAPI [12], and Quadrics Elan [13].

3 Techniques for Optimizing Communication Performance

3.1 Asynchronous RMA Communication

The traditional RMA communication facilitates data transfers between a buffer of a
local processor and another location in the remote processor memory. However, co-
operation with the remote processor is not required to complete the data transfer. The
RMA model is closely aligned with RDMA capabilities of modern networks (Infini-
band, Myrinet, VIA, Elan), which provide hardware support to read from or write to

message passing
2-sided model

remote memory access
(RMA) 1-sided model

Shared memory load/stores
0-sided model

��������

receive send

�� ��

 P1
P0

put

�� ��

 P1 P0

A=B

�� ��

Fig. 1. Taxonomy of communication models.

remote memory locations. With the exception of Elan, which offers virtual memory
RDMA, the networks listed above require the source and destination buffers to be
registered with the network adapter in advance of the communication. Registration al-
lows the network adapter driver to establish virtual memory translations and lock the
buffers in physical memory. RDMA is a simple communication model that enables
network adapters on two ends of the network to complete data transfer asynchro-
nously and avoid remote-host processing. This simplicity makes RDMA, in most
cases, the highest performance data-transfer mechanism available. If communication
buffers are registered, RMA operations such as put or get map directly to the RDMA
write or put operations supported by the hardware. Since the RMA model does not
require a remote processor to match message tags or deal with early message arrivals,
as required in message passing, RMA can achieve higher performance on these net-
works, as well.

Fig. 2. (a) Bandwidth in ARMCI Put/Get in comparison to Raw Elan4 Get/Put and MPI
Send/Recv on the Elan4 cluster. (b) Percentage overlap for increasing message sizes for MPI
and ARMCI on various platforms (SP, Elan4, GM).

0

100

200

300

400

500

600

700

800

900

1 10 100 1000 10000 100000 1000000 10000000

Bytes

M
B

ps

MPI Send/Recv
ARMCI Get
ARMCI Put
Raw Elan4 Get
Raw Elan4 Put

Percentage Overlap

0

20

40

60

80

100

120

100 1000 10000 100000 1000000 1000000
0

Message Size [Bytes]

%
 o

ve
rla

p

GM
LAPI
Elan4

The first benchmark is designed to demonstrate the performance of ARMCI Put
and Get operations, which is based on RMA programming model, on the HP IA64
Linux cluster with Quadrics QsNetII network. It also demonstrates the effectiveness of
the low overhead implementation of these operations over the native communication
protocols (Elan4). Figure 2a compares the performance of ARMCI Put/Get with MPI
Send/Recv and the Native RDMA Put/Get on the Quadrics Elan-4 cluster. The
benchmark used here clearly shows that ARMCI operations introduce very low over-
head over the native Quadrics protocols. ARMCI does quite well compare to MPI
since it avoids the usual tag-matching overheads that the message-passing libraries
have to provide.

3.2 Latency Hiding

Latency hiding (or latency tolerance) can be accomplished through different tech-
niques, including overlapping communication with computation [14] by the use of
nonblocking communication [15, 16] and zero-copy protocols. Another technique, is
coalescing small put/get messages (i.e., aggregation) [17] into larger ones to eliminate
startup cost for as many messages as possible and to improve network utilization. The
availability of non-blocking RMA operations presents additional opportunities for
overlapping data transfers and computations. Although pre-fetching and post-storing
instructions are often supported by the shared memory hardware and are exploited by
compilers to overlap computations with data movement, a scientific programmer on
shared memory systems typically faces difficulties when attempting to manage ex-
plicitly overlapping of computations and communication due to the lack of precise
APIs. Such explicit non-blocking APIs are present in the most RMA interfaces.

3.2.1 Non-blocking Communication Interfaces
Nonblocking operations initiate a communication call and then return control to the
application. The user who wishes to exploit nonblocking communication as a tech-
nique for latency hiding by overlapping communication with computation implicitly
assumes that progress in communication can be made in a purely computational phase
of the program execution when no communication calls are made. Unfortunately, that
assumption is often not satisfied in practice in MPI-- the availability of nonblocking
API does not guarantee that overlapping communication with computation is always
possible [18]. The RMA interfaces of the high performance networks (GM, ELAN,
LAPI) include nonblocking interfaces and provide good potential for overlapping
communication with computations.

We conducted a test to demonstrate the effectiveness of RMA non-blocking com-
munications. The overlap microbenchmark deals with overlapping communication
with computation, and it was performed in the context of available RMA based net-
work protocols (IBM-SP (LAPI), Linux cluster with Myrinet (GM) and Quadrics
(Elan4) interconnects). The percentage overlap is measured as the amount of time of a
nonblocking (data transfer) call that can be overlapped with useful computation with-
out increasing the overall benchmark time. We consider this a good measure of the ef-
fectiveness of a non-blocking call. The computation is incorporated in the program in
the form of a delay. Increasing computation is gradually inserted between the initiat-

ing nonblocking get call and the wait completion call. As we keep increasing the
computation, at some point the sum of the nonblocking call issue overhead and com-
putation would exceed the idle CPU time, so the total benchmark running time would
increase. This point gives us the maximum possible overlap. We performed this ex-
periment on two nodes, with one node issuing the nonblocking get for data located on
the other and then waiting for the transfer to be completed in the wait call. From Fig-
ure 2b, we observe that the RMA model offers a higher level of overlap on these net-
works. On Elan4, the overlap efficiency is not close to 100% up to 64KB because, the
latency to transfer data up to 64KB is very low (e.g. 13 micro seconds for 8K message
size) and overhead of the non-blocking and wait call initiation times with respect to
latency is high (approximately 3 microseconds).

3.2.2 Zero-Copy Protocols
The zero-copy communication is increasingly important due to the growing gap be-
tween processor and memory speeds: memory b/w is also a precious resource shared
in SMP clusters between multiple processors. When implemented it allows remote
CPU to work on its own computations rather than be interrupted and involved in data
copying on behalf of another processor (see Figure 3b). RMA model is well suited for
zero-copy implementation on the networks such as Quadrics, Infiniband and Myrinet,
since both source and destinations are known and memory buffers can be preregis-
tered. In that case put/get operations are handled by DMA engines on the NIC, thus
avoiding multiple memory copies (see Figure 3a) on local as well as on the remote
CPU. Thus there is more opportunity for overlapping communication as both the local
and remote CPU can do useful computations while data transfer is taking place.

For example, the communication protocols used to optimize blocking transfers of

data from non-registered memory by pipelined copy and network communication
through a set of registered memory buffers [7] can achieve very good performance by
tuning the message fragmentation in the pipeline [19]. However, pipelining is not ef-
fective for non-blocking communication as memory copy requires the active host
CPU involvement and therefore reduces the potential for effective overlapping com-
munication with computation. To increase the overlap, we expanded the use of direct
(zero-copy) protocols on networks that require memory registration, such as Myrinet.

��
Copy-based, high CPU involvement
��

Zero-copy, low CPU involvement e.g.,
Quadrics

Fig. 3. Data Movement Schemes: (a) copy-based protocol and (b) zero-copy protocol.

��	
���

�

����

����

�� ��

���� �����

�� ��
�

����

��	
���

����

�
�� �����

��

����� �����

��

3.3 Data Locality and Shared Memory

The fastest communication protocols available on modern high-performance clusters
are shared memory within the SMP nodes and RDMA between the nodes. To take full
performance advantage of these protocols, exploiting data locality information is
critical in implementation of communication protocols but we also advocate it at the
application level. Specifically, with appropriate task mapping information, applica-
tions can in fact use shared memory to communicate between tasks within the same
node and RMA between the nodes.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 10 100 1000 10000 100000 1000000 10000000

bytes

B
an

dw
id

th
 [M

B
/s

]

shared memory protocol
RDMA read/registered memory

Fig. 4. Performance of get operation between RDMA read from registered memory and within
the SMP node using shared memory.

Performance benefits of using registered shared memory is demonstrated below for
a Linux cluster employing dual 1GHz Itanium-2 nodes interconnected with the Mel-
lanox, Infiniband “Cougar” cards. Figure 4 shows the performance of a get operation
implemented on top of shared memory and implemented using an RDMA read opera-
tion (memory is registered), both within the SMP node. Because a single network
adapter must move the data across the PCI bus twice within an SMP node, the RDMA
read bandwidth is about half of the rate for that operation across the network. The
shared memory communication profile is slightly affected by caching of data and di-
rectly follows performance of the memory copy operation.

4 Example - a parallel matrix multiplication

In the previous section, optimization mechanisms to improve the overall performance
of scientific applications were discussed along with system level tests to validate the
effectiveness of the optimization mechanisms and advanced communication proto-
cols. The effectiveness of these protocols is evaluated by incorporating these tech-
niques in the context of an RMA based parallel matrix multiplication algorithm. For
the comparison, we used the pdgemm routine from PBLAS/ScaLAPACK Version 1.7,
which uses message passing communication model.

For many scientific applications, matrix multiplication is one of the most important

linear algebra operations. At the high level, the parallel matrix multiplication algo-
rithm follows the serial block-based matrix multiplication (see Figure 5 and 6) by as-
suming the regular block distribution of the matrices A, B, and C. Each process ac-
cesses the appropriate blocks of the matrices A and B to multiply them together with
the result stored in the locally owned part of matrix C.

In principle, the overall sequence of block matrix multiplications can be similar to
that in Cannon’s algorithm. However, unlike Cannon’s algorithm, where skewed
blocks of matrix A and B are shifted using message-passing to the logically neighbor-
ing processors, our approach fetches these blocks independently, as needed, without
requiring any coordination with the processors that own the matrix blocks. This is
possible thanks to the use of RMA or shared memory access protocols. In addition,
the specific sequence in which the block matrix multiplications are executed is deter-
mined dynamically at run time to more efficiently schedule and overlap communica-
tion with computations. The absence of sender-receiver synchronization/coordination
(such in Cannon’s algorithm) based on message passing makes the overall algorithm
more asynchronous and thus more suited for the execution environments where the
computational threads share a CPU with other processes and system daemons (e.g., on
commodity clusters). This is because synchronization amplifies performance degrada-

Fig. 6. Matrix distribution example. In a 4 x 4 process grid, process P00 needs blocks of matrix
A from P00, P01, P02, and P03, and blocks of matrix B from P00, P10, P20, and P30.

 = x

���� ������������

�
���� ������������

����
�

������������

���� ������������

1: for i=0 to s-1 {

2: for j=0 to s-1 {

3: Initialize all elements of Cij to zero
(optional)

4: for k=0 to s-1 {

5: Cij = Cij + Aik×Bkj

6: }

7: }

8: }

Fig. 5. Block matrix multiplication for matrices N×N and block size N/s × N/s.

tions due to the nonexclusive use of the processor by the application. In this algo-
rithm, we start computations by accessing matrix A and B blocks within the same
SMP node through shared memory as suggested in 3.3 while nonblocking RMA calls
are issued for getting matrix blocks on remote nodes.

4.1 Role of Zero-copy and Non-blocking Protocols

Zero-copy non-blocking is used in this application to transfer matrix blocks, the
communication can be overlapped with computation, as shown in Figure 7. To dem-
onstrate the effectiveness of zero-copy protocol, we evaluated what degree zero-copy
RMA communication affected the performance of matrix multiplication. As zero-
copy protocol is default in Quadrics elan4 network, we used Myrinet to investigate
the role zero-copy protocols play in performance of the matrix multiplication. The
new matrix multiplication algorithm was tested with enabling and disabling the zero-
copy implementation [19] of the ARMCI get operation. Figure 8 shows that zero-copy
protocol is very important for performance of the new algorithm. This test is per-
formed on the Linux cluster with Myrinet, using 1) blocking and non-blocking com-
munications, and 2) zero-copy protocol disabled and enabled. These results show that
the performance benefit of using nonblocking communications is amplified when the
zero-copy protocol is enabled. This is because; the remote host CPU cycles are not
taken away when overlapping communication with computation since the NICs are
able to transfer the data between the user buffers across the network. We were able to
overlap more than 90% of the communication with computation, thus improving the
overall application performance.

A B C

Computation

Communica-
tion

Fig. 7. Using two sets of buffers to overlap communication and computation in matrix multi-
plication.

4.2 Communication Contention Management

An effective communication pattern in parallel algorithms reduces the network comu-
nication contention on clusters and thus effectively utilizing network bandwidth. In
our parallel matrix multiplication algorithm we used a network contention algorithm
(NCA) as shown in Figure 9. For example, consider a matrix A that is distributed on a
4 x 4 processor grid (as shown in Figure 9 (1) on a 4-way SMP cluster, i.e., node 1
has processors P00, P10, P20, and P30; node 2 has P01, P11, P21, and P31; etc., as shown
in Figure 9 (2). To compute its locally owned matrix C, a processor needs the corre-
sponding rows and columns of matrix A and B respectively, as shown in Figure 7. i.e.,
processor P00 needs blocks of matrix A from P00, P01, P02, and P03, and blocks of ma-
trix B from P00, P10, P20, and P30. If the network contention algorithm is not used,
processors P00, P10, P20, and P30 get a block from P01, P11, P21, and P31, respectively in
the first step. Thus all the 4 processors are sharing the network bandwidth between
node1 and node2. If the diagonal shift algorithm is used instead, then processors P00,
P10, P20, and P30 get a block from P00 (node0), P11 (node1), P22 (node2 and P33 (node3,
respectively in the first step, thus reducing the contention. Figure 9 (3) represents the
pattern of getting blocks by processors in node 1.

The communication load in the multiplication kernel is spread uniformly using a
network contention algorithm as shown in Figure 9, thus improving network band-
width utilization. Figure 10 shows the effect of incorporating network contention al-
gorithm (NCA) in blocking and non-blocking flavors of matrix multiplication on an
8000 size matrix multiplication on Quadrics HP Linux cluster at PNNL.
PBLAS/ScaLAPACK (which uses MPI) matrix multiplication numbers are also
shown in the Figure 10. From Figure 10, it is demonstrated that as the number of
processors increase the non-blocking and NCA version of matrix multiplication scales
extremely well when compared to others. As the number of processors increase, even

0

10

20

30

40

50

60

70

80

Processor count /
matrix size

A
gg

re
ga

te
 G

flo
ps

zero copy disabled
+ blocking

zero copy disabled
+ nonblocking

zero copy enabled
+ blocking

zero copy enabled
+ nonblocking

Fig. 8. Performance of the matrix multiplication on Linux Cluster (Myrinet Interconnect) with
enabled or disabled zero-copy protocol.

the blocking with NCA version of matrix multiplication performs better than the non-
blocking version without NCA.

4.3 Performance and Scalability

Experiments were conducted for various problem (matrix) sizes and processor counts
on the HP Linux cluster based on 980 dual 1.5-GHz Intel Itanium2 nodes and Quad-
rics QsNetII network at PNNL. The (square) matrix sizes range from 2000 till 40000
for up to 1849 processors. Due to operational constraints, we could not run on the
whole machine (1960 processors). Figure 11 shows the performance numbers of the
optimized matrix multiplication (called SRUMMA [20, 21]) and pdgemm from

���� ������������

���� ������������

���� ������������

���� ������������

(1) (2)

���� ������������

���� ������������

���� ������������

���� ������������

(3)

Fig. 9. Pattern of getting blocks on a 4-way SMP cluster to reduce communication contention.

Fig. 10. Effect of network contention algorithm (NCA) in parallel matrix multiplication.

Effect of Network Contention

0

200

400

600

800

1000

1200

1400

0 50 100 150 200 250 300

Processors

A
gg

re
g
at

e
G

L
O

P
s

non blocking + NCA

blocking+NCA

nonblocking

blocking

PBLAS/ScalaPACK. SRUMMA achieved a maximum of 9.7 teraflops on 1849 proc-
essors, where as PBLAS achieved lower than 8 teraflops. For a problem size of 40000
on 1849 CPUs, our implementation achieves a parallel dgemm efficiency of 88.2% of
the theoretical machine peak performance on the HP Linux cluster at PNNL, where as
the PBLAS pdgemm efficiency is 74%. Extrapolating these numbers for 1960 proces-
sors, we would get 10.3 teraflops, which recorded a maximum LINPACK perform-
ance is 8.6 teraflops. Thus, using advanced communication protocols optimal applica-
tion performance can be obtained on Linux Clusters. The vendor optimized sequential
dgemm (mlib from HP) is 92.9%.

Figure 12 presents the performance differences for square matrices, no transpose;
matrix ranks range from 200 to 8000 on Quadrics Linux cluster. As shown in Figure
12, the SRUMMA outperforms pdgemm and scales better, with the most profound
gains seen are due to the incorporation of these optimizations. For example on the
Linux cluster, it is faster by 20% to 60% in most of the cases. In most of the cases, we
were able to overlap 90% of the communication with computation.

5 Conclusion

This paper described communication performance optimizations that are relevant to
modern clusters. We showed impact of these optimizations on performance of parallel
matrix multiplication kernel. It achieved 10.3 teraflops on a 8.6 teraflop (Rmax) Linux
supercomputer. For a problem size of 40000 on 1849 CPUs, parallel dgemm effi-
ciency of 88.2% of the theoretical peak performance was measured, whereas the

Parallel Matrix Multiplication on the HP/Quadrics Cluster at PNNL
Matrix size: 40000x40000

Efficiency 92.9% w .r t. serial algorithm and 88.2% w .r.t. machine peak on 1849 CPUs

0

2

4

6

8

10

12

0 512 1024 1536 2048

Processors

T
er

aF
L
O

Ps

SRUMMA

PBLAS/ScaLAPACK pdgemm

Theoretical Peak

Perfect Scaling

Fig. 11. Parallel Matrix Multiplication (SRUMMA) performance on the HP/Quadrics cluster at
PNNL

PBLAS pdgemm efficiency was 74%. We found remote memory access (RMA)
communication model valuable because of its simplicity and good hardware support
on modern networks it possesses certain characteristics important for reducing the
performance gap between system peak and application performance.

PBLAS/ScaLAPACK

0

200

400

600

800

1000

1200

1400

0 50 100 150 200 250 300

Processors

A
gg

re
ga

te
 G

FL
O

P
S

2000
4000
8000

SRUMMA

0

200

400

600

800

1000

1200

1400

0 50 100 150 200 250 300

Processors

A
gg

re
ga

te
 G

Fl
o
ps

2000
4000
8000

Fig. 12. SRUMMA vs. PBLAS pdgemm.

References

[1] Top500. Top 500 Supercomputer List. www.top500.org.
[2] J. Dongarra, "The LINPACK Benchmark: An Explanation," in proceedings of Proceedings

of the 1st International Conference on Supercomputing, 1987.

[3] Olaf Lubeck, Adolfy Hoisie, Federico Bassetti, Kirk Cameron, Yong Luo, and H.
Wasserman, " ASCI Application Performance and the Impact of Commodity Processor Ar-
chitectural Trends," in proceedings of International Workshop on Innovative Architecture,
1998.

[4] W. Wulf and S. McKee, "Hitting the memory wall: Implications of the obvious," in ACM
Computer Architecture News, 1995.

[5] MPI. The Message Passing Interface Forum. www.mpi-forum.org.
[6] C. Guiang, K. Milfeld, and A. Purkayastha, "Remote memory operations of Linux clusters:

expressiveness and efficiency of current implementation," in proceedings of 3rd LCI Inter-
national Conference on Linux Clusters, St. Petersburg, Florida, 2003.

[7] J. Nieplocha, V. Tipparaju, A. Saify, and D. K. Panda, "Protocols and strategies for optimiz-
ing performance of remote memory operations on clusters," in proceedings of Communica-
tion Architecture for Clusters (CAC'02) Workshop, held in conjunction with IPDPS '02,
2002.

[8] J. Nieplocha and B. Carpenter, "ARMCI: A Portable Remote Memory Copy Library for
Distributed Array Libraries and Compiler Run-time Systems," in proceedings of RTSPP of
IPPS/SDP'99, 1999.

[9] J. Nieplocha, E. Apra, J. Ju, and V. Tipparaju, "One-Sided Communication on Clusters with
Myrinet," Cluster Computing, vol. 6, pp. 115-124, 2003.

[10] MPI-2, "Message Passing Interface Forum. MPI-2: Extensions to the Message-
Passing Interface."

[11] R. Bariuso and A. Knies, SHMEM's User's Guide: Cray Research, Inc., 1994.
[12] G. Shah, J. Nieplocha, J. Mirza, C. Kim, R. Harrison, R. K. Govindaraju, K. Gildea,

P. DiNicola, and C. Bender, "Performance and experience with LAPI-a new high-
performance communication library for the IBM RS/6000 SP," in proceedings of Interna-
tional Parallel Processing Symposium IPPS/SPDP, 1998.

[13] F. Petrini, S. Coll, E. Frachterberg, and A. Hoisie, "Peformance Evaluation of the
Quadrics Interconnection Network," Journal of Cluster Computing, 2003.

[14] V. Strumpen and T. L. Casavant, "Exploiting Communication Latency Hiding for
parallel network computing: model and analysis," in proceedings of PDS, 1994.

[15] S. B. Baden and S. J. Fink, "Communication overlap in multi-tier parallel algo-
rithms," in proceedings of Proceedings of Supercomputing, 1998.

[16] E. Culler, A. Dusseau, S. Goldstein, A. Krishna-murthy, S. Lumetta, T. Eicken, and
K. Yelick, "Parallel programming in Split C," in proceedings of Proc. Supercomputing,
1993.

[17] D. Pham and C. Albrecht, "Optimizing Message Aggregation for Parallel Simulation
on High Performance Clusters," in proceedings of 7th Intern. Symposium on Modeling
Analysis and Simulation of Computer and Telecommunication Systems, 1999.

[18] J. B. White and S. W. Bova, "Where's the overlap? Overlapping communication and
computation in several popular mpi implementations," in proceedings of Third MPI Devel-
opers' and Users' Conference, 1999.

[19] R. Y. Wang, A. Krishnamurthy, R. P. Martin, T. E. Anderson, and D. E. Culler,
"Modeling and Optimizing Communication Pipelines," in proceedings of ACM
SIGMETRICS Conference on Measurement and Modeling of Computer Systems, 1998.

[20] M. Krishnan and J. Nieplocha, "SRUMMA: a matrix multiplication algorithm suit-
able for clusters and scalable shared memory systems," in proceedings of Parallel and Dis-
tributed Processing Symposium, 2004.

[21] M. Krishnan and J. Nieplocha, "Optimizing Parallel Multiplication Operation for
Rectangular and Transposed Matrices," in proceedings of 10th IEEE International Confer-
ence on Parallel and Distributed Systems (ICPADS'04). 2004.

