
Memory Efficient Parallel Matrix Multiplication Operation
for Irregular Problems

Manojkumar Krishnan
Pacific Northwest National Laboratory

P.O.Box 999, K7-90
Richland, WA 99352

1-509-372-4206
manoj@pnl.gov

Jarek Nieplocha
Pacific Northwest National Laboratory

P.O.Box 999, K7-90
Richland, WA 99352

1-509-372-4469
Jarek.Nieplocha@pnl.gov

ABSTRACT
Regular distributions for storing dense matrices on parallel
systems are not always used in practice. In many scientific
applicati RUMMA) [1] to handle irregularly distributed matrices.
Our approach relies on a distribution independent algorithm that
provides dynamic load balancing by exploiting data locality and
achieves performance as good as the traditional approach which
relies on temporary arrays with regular distribution, data
redistribution, and matrix multiplication for regular matrices to
handle the irregular case. The proposed algorithm is memory-
efficient because temporary matrices are not needed. This feature
is critical for systems like the IBM Blue Gene/L that offer very
limited amount of memory per node. The experimental results
demonstrate very good performance across the range of matrix
distributions and problem sizes motivated by real applications.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming –
Parallel programming.

General Terms
Algorithms, Performance, Design (c) 2005 Association for
Computing Machinery.

Keywords
Parallel Matrix Multiplication, Parallel Linear Algebra, Irregular
Distribution, SRUMMA, Remote Memory Access, Global Arrays,
Parallel programming.

1. INTRODUCTION
Matrix multiplication is used in many areas of science and
technology. In fact, for many scientific applications, it represents
one of the most important linear algebra operations. Computer
vendors have optimized the standard serial dense matrix
multiplication interface in the open source Basic Linear Algebra
Subroutines (BLAS) to deliver performance as close to the peak
processor performance as possible. Because optimized matrix
multiplication can be so efficient, computational scientists, when

feasible, attempt to reformulate the mathematical description of
their application in terms of matrix multiplications.

In earlier studies [2-22], researchers targeted their parallel
implementations for massively parallel processor (MPP)
architectures with uniprocessor computational nodes (e.g., Intel
Touchstone Delta, Intel IPSC/860, nCUBE/2) on which message
passing was the highest-performance and typically the only
communication protocol available. In particular, these algorithms
relied on optimized broadcasts or send-receive operations.
Contemporary architectures differ in several key aspects from the
earlier MPP systems. Regardless of the processor architecture, to
improve the cost-effectiveness of the overall system, both the
high-end commercial designs and the commodity systems employ
as a building block Symmetric Multi-Processor (SMP) nodes
connected with a high-performance network. All of these
architectures have the hardware support for load/store
communication within the underlying SMP nodes, and some
extend the scope of that protocol to the entire machine (Cray X1,
SGI Altix). Although the high-performance implementations of
message passing can exploit shared memory internally, the
performance is less competitive than direct loads and stores.
Multiple studies have attempted to exploit the OpenMP shared
memory programming model in the parallel matrix multiplication,
either as a standalone approach on scalable shared memory
systems [23,24] or as a hybrid OpenMP-MPI approach [25,26] on
SMP clusters. Overall, the reported performance results when
compared to the pure MPI implementations were not encouraging.

The underlying conceptual model of the architecture for which the
SRUMMA (Shared and Remote-memory based Universal Matrix
Multiplication Algorithm) algorithm was designed is a cluster of
multiprocessor nodes connected with a network that supports
remote memory access communication (put/get model) between
the nodes [1]. Remote memory access (RMA) is often the fastest
communication protocol available, especially when implemented
in hardware as zero-copy RDMA write/read operations (e.g.,
Infiniband, Quadrics, and Myrinet). RMA is often used to
implement point-to-point MPI send/receive calls [27,28]. To
address the growing gap between processor and network speed,
SRUMMA relies on nonblocking RMA operation as the primary
latency hiding mechanism (through overlapping communication
with computations) [29]. In addition, each cluster node is assumed
to provide efficient load/store operations that allow direct access
to the data. In other words, a node of the cluster represents a
shared memory communication domain. SRUMMA is explicitly
aware of the task mapping to shared memory domains; that is, it is
written to use shared memory to access parts of the matrix held on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CF’06, May 3-5, 2006, Ischia, Italy.
Copyright 2006 ACM 1-59593-302-6/06/0005...$5.00.

processors within the domain of which the given processor is a
part, and nonblocking RMA operations to access parts of the
matrix outside of the local shared memory domain (i.e., RMA
domain). Unlike the OpenMP studies [23, 24] that relied on a
compiler-based and high-level shared memory model, we simply
place the distributed matrices in shared memory and exercise full
control over the data movement either through the use of explicit
loads and stores or optimized block memory copies. A comparison
to the standard matrix multiplication interface, pdgemm in
PBLAS [20] and SUMMA [19], revealed that for square matrices
with regular distributions, SRUMMA achieves consistent and
very competitive performance on the four architectures used in the
study [1]: 16-way (IBM SP) and 2-way (Linux/Xeon) nodes, SGI
Altix, and the Cray X1 with its partitioned shared memory
hardware. SUMMA [19] is also used in practice in the pdgemm
routine in PBLAS [20], which is a building block of ScaLAPACK
[21].

However, regular distributions of matrices on parallel systems are
not always used in practice, and therefore, the parallel matrix
multiplication algorithms designed for regular problems cannot be
used directly. In many scientific applications, matrix distribution
is based on the underlying physical problem which might involve
variable block sizes on individual processors [41]. For example,
in computational chemistry matrix distribution is chosen based on
the basis set of the atoms in molecular systems to exploit data
locality and maximize performance of the Fock construction
algorithm [39] which is a key element of the self-consistent field
(SCF) calculations. The irregular distribution of the matrix can
significantly impact the performance of matrix multiplication
operation and prevent users from using the available matrix
multiplication algorithms directly. The standard approach for
multiplying irregularly distributed matrices has been based on
multiplying regularly distributed temporary arrays and requires
data redistribution. In addition to the extra communication
involved in the redistribution process, the main issue with this
approach has been the extra memory consumption required for the
temporary arrays. This issue is especially important for emerging
massively parallel systems like the IBM Blue Gene/L, which are
based on dense packaging and offer very limited memory
expansion options. Addressing this limitation without
compromising the performance is the primary goal of our work.

In this paper we generalize the SRUMMA algorithm to handle
irregularly distributed matrices efficiently without relying on array
temporaries and data redistribution. The main contribution of this
work is the memory-efficient distribution-independent algorithm
that delivers performance as good as that provided by the standard
redistribution-based approach, and therefore is very well suited for
large matrices and systems with memory constraints that cannot
handle temporary arrays [42]. We also describe and compare the
two approaches for irregularly distributed matrices: 1)
redistribution of irregularly distributed matrices to the regular
form followed by the regular matrix multiplication, 2) proposed
distribution independent matrix multiplication based on logical
blocking of the result matrix. The SRUMMA algorithm with
proposed extensions is general, memory-efficient, and able to
deliver excellent performance and scalability on modern systems.

The paper is organized as follows. Section 2 describes the
SRUMMA algorithm, its efficiency model, and implementation.
In Section 3, the distribution independent matrix multiplication
algorithm is presented. Section 4 describes and analyzes
performance results of SRUMMA matrix multiplication for
various matrix distributions from two application areas as well as

results for the communication operations used in the
implementation. The paper is concluded in Section 5.

2. OVERVIEW OF THE BASELINE
SRUMMA ALGORITHM
At the high level, SRUMMA follows the serial block-based
matrix multiplication (see Figure 1) by assuming the regular block
distribution of matrices A, B, and C and adopting the “owner
computes” rule with respect to blocks of the matrix C. Each
process accesses the appropriate blocks of matrices A and B to
multiply them together with the result stored in the locally owned
part of matrix C. The specific protocol used to access nonlocal
blocks varies depending on whether they are located in the same
or another shared memory domain as the current processor.

In principle, the overall sequence of block matrix multiplications
can be similar to that in Cannon’s algorithm. However, unlike
Cannon’s algorithm, where skewed blocks of matrix A and B are
shifted using message-passing to the logically neighboring
processors, our approach fetches these blocks independently, as
needed, without requiring any coordination with the processors
that own the matrix blocks. This is possible thanks to the use of
RMA or shared memory access protocols. In addition, the specific
sequence in which the block matrix multiplications are executed is
determined dynamically at run time to more efficiently schedule
and overlap communication with computations. The absence of
sender-receiver synchronization/coordination (such as in
Cannon’s algorithm) based on message passing makes the overall
algorithm more asynchronous and thus more suited for the
execution environments in which the computational threads share
a CPU with other processes and system daemons (e.g., on
commodity clusters). This is because synchronization amplifies
performance degradations resulting from the nonexclusive use of
the processor by the application.

2.1 Efficiency Model
Consider a matrix multiplication operation C = AB in which the
order of matrices A, B, and C is m x k, k x n, and m x n,
respectively. Let us 1) denote that tw is the data transfer time per
element, ts is the latency (or startup cost), P is the number of
processors, p x q is a process grid in two-dimensional fashion i.e.,
P = p x q, and 2) assume (similarly to other papers [7, 30]) that the
cost of the addition and multiplication floating point operation
takes unit time (line 5 in Figure 1). For our analysis, we assume a
two-dimensional matrix distributed as shown in Figure 2.

Each process owns a block of A, B and C matrix of size
q
k

p
m
× ,

q
n

p
k
× , and

q
n

p
m
× respectively. The sequential time Tseq of the

matrix multiplication algorithm is N3 (say, m=n=k=N). The

1: for i=0 to s-1 {
2: for j=0 to s-1 {
3: Initialize all elements of Cij to
 zero (optional)
4: for k=0 to s-1 {
5: Cij = Cij + Aik×Bkj
6: }
7: }
8: }

Figure 1. Block matrix multiplication for matrices N×N and
block size N/s × N/s

parallel time Tpar_rma is the sum of computation time (Tcomp) and
the communication time to get the row and column blocks of
matrices A and B (Tcomm = Trow_comm + Tcolumn_comm). Each process
gets q blocks of matrix A and p blocks of matrix B of

size ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
q
k

p
m

 and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
q
n

p
k

, respectively. Trow_comm = {data

transfer time of message size
pq
mk

} + {latency/start-up cost} =

qtt
pq
mk

sw ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

Similarly, Tcolumn_comm = ptt
pq
nk

sw ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
 ,thus, Tpar_rma

=
P

mnk
 + qtt

pq
mk

sw ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
 + ptt

pq
kn

sw ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

For simplicity, we assume m=n=k=N and p=q= P , then

Tpar_rma = O ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

P
N 3

 + O ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

P
N 2

 + O ()P (1)

For a network with sufficient bandwidth, ts can be neglected as it
is relatively small when compared to the total communication
time. Therefore, the parallel efficiency (η) is, η = Speedup/P =

wt
N

P21

1

+

 =

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

N
PO1

1

The isoefficiency function of this algorithm is O (P3/2), which is
same as Cannon’s algorithm [7,19].

Overlapping communication with computation: When non-
blocking RMA is used to transfer matrix blocks, the
communication can be overlapped with computation, as shown in
Figure 3.

The degree of overlapping, ω, is defined as follows: ω

= ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

comm

comp

T
T

1 ; if ω < 0, ω = 0

Introducing ω in (1), Tpar_rma =

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+ PP

P
N

P
N δβωα 23

2 (2)

If Tcomp >= Tcomm (i.e., 100% overlap), (2) reduces to Tpar_rma =

Pt
P

N
s2

3
+ = O ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

P
N 3

 + O ()P (3)

2.2 Implementation Considerations
To derive an efficient implementation of the matrix multiplication
algorithm, we rely on the following assumptions: 1) the ability to
overlap computation with the network communication on clusters
is essential for latency hiding; 2) hardware-supported shared
memory is the fastest protocol available on the shared memory
architectures and SMP nodes of the current clusters ; 3) to avoid
dependencies on the OpenMP interfaces and compiler technology,
we need as much control over shared memory communication as
possible; and 4) use of RMA is preferable to the send-receive
model, as it makes the implementation simpler and potentially
more efficient because of the reduced synchronization cost. We
will first describe the implementation of the algorithm for clusters;
then we will discuss special considerations for the scalable shared
memory systems.

For each processor p and corresponding matrix block Cij held on
that processor,

1. Build a list of tasks corresponding to the block matrix

multiplications in: ∑
=

=
pn

k
kjikij BAC

1

 where a task computes

each of the AikBkj products.

2. Reorder the task list according to the communication domains
for processors at which the Aik, Bkj are stored. The tasks that
involve matrix blocks stored in the shared memory domain of

= x

P00 P03 P02 P01

P10 P13 P12 P11

P20 P23 P22 P21

P30 P33 P32 P31

Figure 2. Matrix distribution example: In a 4 x 4 process grid,
process P00 needs blocks of matrix A from P00, P01, P02, and
P03, and blocks of matrix B from P00, P10, P20, and P30.

Figure 4. Pattern of getting blocks on a 4-way SMP cluster to
reduce communication contention.

P00 P03 P02 P01

P10 P13 P12 P11

P20 P23 P22 P21

P30 P33 P32 P31

(a) (b)

P00 P03 P02 P01

P10 P13 P12 P11

P20 P23 P22 P21

P30 P33 P32 P31

(c)

A B C

Computation

Communication

Figure 3. Using two sets of buffers to overlap communication
and computation in matrix multiplication

the current processor are moved to the beginning of the list.
This action is taken to ensure overlap of computations and
nonblocking communication required to bring matrix blocks
from other cluster nodes to compute the other tasks on the list.
Because the tasks at the beginning of the list use data
accessible directly, we do not have to wait to start the pipeline.
Another consideration in sorting the task list is to optimize the
locality reference so that the currently held Aik matrix block is
used in consecutive matrix products before its copy is
discarded and the corresponding buffer reused.

3. For each task on the list,

• Issue a nonblocking get operation for the matrix block
involved in the next task on the list if it is not on the same
node.

• Wait for the nonblocking get operation bringing Aik and/or
Bkj to execute the current task.

• Call serial matrix multiplication that computes AikBkj and
adds the result to the Cij block.

4. There are two temporary buffers (B1 and B2) used internally.
One buffer is used for communication and the other buffer is
used for computation as shown in Figure 3. At a given step, a
processor receives data in B2 while computing the data in B1.
In the next step, data received in B2 are used for computation
and B1 is used for receiving data. Overlapping communication
with computation is achieved in all but the first step.

As a further refinement of the algorithm, as shown in Figure 4, the
“diagonal shift” algorithm is used in Step 2 to sort the task list so
that the communication pattern reduces the communication
contention on clusters. For example, consider a matrix A that is
distributed on a 4x4 processor grid (as shown in Figure 4a on a 4-
way SMP cluster, that is, node 1 has processors P00, P10, P20, and
P30; node 2 has processors P01, P11, P21, and P31; etc., as shown in
Figure 4b. To compute its locally owned matrix C, a processor
needs the corresponding rows and columns of matrix A and B
respectively, as shown in Figures 2 and 3 (i.e., processor P00 needs
blocks of matrix A from P00, P01, P02, and P03, and blocks of
matrix B from P00, P10, P20, and P30). If the diagonal shift
algorithm is not used, processors P00, P10, P20, and P30 get a block
from P01, P11, P21, and P31, respectively in the first step. Thus all

four processors are sharing the network bandwidth between node1
and node2. If the diagonal shift algorithm is used instead, then
processors P00, P10, P20, and P30 get a block from P00 (node1), P11
(node2), P22 (node3), and P33 (node4), respectively in the first step,
thus reducing the contention. This algorithm performs better if
there are more processors per node [1]. Figure 4c represents the
pattern of getting blocks by processors in node 1.

The cluster algorithm running on a system with one shared
memory communication domain reduces to a shared memory
version. However, this algorithm has two versions, and the one
used depends on whether remote shared memory is locally
cacheable. For example, the Cray X1 the shared memory cannot
be cached because of the memory coherency protocol [31].
Because the performance of the serial matrix multiplication
depends critically on the effective cache utilization, on the Cray
X1 we copy nonlocal blocks of matrices A and B to a local buffer
before calling the serial matrix multiplication. On the other hand,
the SGI Altix is a shared memory system in which shared memory
data can be cached. The matrix multiplication does not require
explicit memory copies: the appropriate blocks of matrix A and B
are passed directly to the serial matrix multiplication subroutine.

The current implementation of SRUMMA relies on the portable
ARMCI library [32,34,35] and, in particular, the memory
allocation interface ARMCI_Malloc, nonblocking get operations,
and the cluster configuration query interfaces [33]. The cluster
configuration information provided by ARMCI enables the
application at run time to determine which processors can
communicate through shared memory. ARMCI_Malloc is a
collective memory allocator that allocates shared memory on
clusters or shared memory architectures. Using the pointer values
and cluster locality information, processors in the same shared
memory domain can access the allocated memory directly through
load/store operations or through the ARMCI communication calls.
For example, ARMCI get/put operations are implemented as a
memory copy within the SMP node of a cluster. Thanks to the
ARMCI compatibility with MPI, the current implementation of
the matrix multiplication routine could be used in normal MPI-
based programs, provided that the distributed arrays are allocated
using ARMCI_Malloc rather than, for example, the standard
malloc call. This is not a significant restriction because in most
applications, distributed arrays are created collectively anyway.

 a1 a2 a3

P00 P01
P10 P11

 P02
 P12

P20

P21

 P22

=

 c1

 b2

b1

 x

 x

 x

Communication
(Overlap)

Computation

(a)

(b)

Figure 5: (a) Matrix distributed on a 3x3 process grid with uneven block sizes. (b) Matrix is logically partitioned so that it is load
balanced. (c) Now each process works on its logical partition. Process P00 gets the logical blocks a1, a2, a3 and b1, b2, b3 to compute its
logically owned partition c1.

(c)

a1

a2

b1

b2

b3

3. DISTRIBUTION INDEPENDENT
ALGORITHM
In previous work, we extended SRUMMA to handle transpose
and rectangular matrices [36]. In this paper, we propose a
distribution-independent [42] algorithm to handle irregularly
distributed matrices. The algorithm described in Section 2 is
extended to accomplish this. To improve performance for
irregular distributions, the current approach relies on two
techniques 1) logical block partitioning and 2) exploiting data
locality.

Regular distribution for distributing a matrix on parallel systems is
not always used in practice. In many scientific applications, the
matrix distribution is based on the underlying physical problem
which might involve variable block sizes on individual processors
[41]. This irregular distribution of matrices leads to load
imbalance, a major performance degradation factor in many
applications. The standard approach for multiplying irregularly
distributed matrices has been based on multiplying regularly
distributed temporary arrays and requires data redistribution. We
will refer to this standard approach as copy-based approach. Our

proposed algorithm addresses, not only the load imbalance, but
also the following two major issues,

• extra communication involved in the redistribution process. In
the best case (matrices are regular), the redistribution cost is
zero, and in the worst case (a matrix resides in only one
processor), the redistribution cost is maximum. Therefore, the
redistribution cost is proportional to the degree of irregularity
(i.e. distribution of a matrix among processors).

• extra memory consumption required for the temporary arrays.
This issue is especially important for emerging massively

parallel systems like the IBM Blue Gene/L, which are based on
dense packaging and offer very limited memory expansion
options. In the proposed algorithm, apart from the memory
required to store the matrices, two temporary buffers of fixed
size are used by each process in the communication step. This
temporary buffer size is independent of the block size or matrix
size. If the block size is too big to fit into the temporary buffer,
then the blocks are sub-divided to fit into the temporary buffer.
There are two temporary buffers used in the proposed
algorithm because of the overlapping of communication and
computation. Thus, the proposed algorithm for irregular matrix
multiplication has similar memory requirements as regular
SRUMMA [1]. For the sake of simplicity, and ease of
explanation, we assume that the block size is the same as the
buffer size, and we will refer these temporary buffers as blocks
or logical blocks. In the copy-based algorithm, three temporary
regular matrices (i.e. A, B and C) are created (i.e. O (N^2/P)
extra memory than the proposed algorithm, where N is the
matrix size and P is number of processors). The irregular
matrices are redistributed [40,43] to these regular matrices,

and performed regular SRUMMA matrix multiplication.

Consider a matrix multiplication operation C = AB, in which A,
B, and C are distributed with variable block sizes across
processors. Assuming the distribution of C matrix as shown in
Figure 5a, each matrix is logically partitioned (Figure 5b) such
that all the processors have almost the same logical block size,
independent of the underlying distribution. As shown in Figure 5c,
process P00 gets the logical blocks a1, a2, a3 and b1, b2, b3 to
compute c1. Similarly other processes attempt to compute their
logically owned blocks. Each process is aware of the locality of all

Waits for completion of
all data transfers

Logical block of Matrix
(for e.g. a2)

Determine ownership and
data locality

P00 gets logical block a2 into its local buffer

P01 P02

P11 P12

Issue multiple
non-blocking gets

P00 has the data

P00 P01

P10 P11

 P02

 P12

P20

P21

 P22

P00

 P00

P00

 P00

 P02

 P12

Overlap: P00 starts computation. Once computation is
complete, P00 waits for completion of all data transfers.

 P01

 P10

Figure 6: Process P00 gets the logical chunk a2 from processes P01, P02, P11, and P12

the distributed matrices. Once the physical location of the logical
block in the distributed/partitioned address space is determined,
indices corresponding to where the logical block is located need to
be determined. When this information is available, multiple non-
blocking get calls are made, one for each remote destination that
holds a part of the data. After all the calls are issued, they are
waited upon until completed. By issuing all the calls first and then
waiting on their completion, a significant amount of overlap can
be achieved. For example, process P00 gets the logical block a2
from processes P01, P02, P11, and P12 by issuing four non-blocking
calls to each of these processes while doing useful computation
with the previously received blocks a1 and b1, and waiting for all
the calls to complete as shown in Figures 5c and 6.

The algorithm attempts to hide most of the communication time
by overlapping communication with computation. This applies to
get operations that transfer blocks of A and B matrices as well as
put operations that write the corresponding blocks of the result
matrix C. The assignment of the logical blocks of matrices to
individual processors is determined at run-time to achieve load
balancing. To reduce communication contention on clusters we
have to modify the diagonal shift algorithm (Section 2.2) to access
logical matrix blocks that can be spread across multiple processors
(Figure 6). The algorithm is applied to logical matrix block rather
than physical processors.

4. EXPERIMENTAL RESULTS
The effectiveness of the SRUMMA for regularly distributed
square matrices on multiple platforms has been discussed in [1].
In this section, we present and analyze the performance of the
matrix multiplication operation for irregular problems. The
numerical experiments were conducted on the following platforms
at Pacific Northwest National Laboratory: 1) Linux cluster based
on dual 1.5-GHz Intel Itanium-2 nodes and Quadrics QsNetII
network (Elan4), 2) SGI Altix 3000, shared-memory NUMA
system with 128 1.5-GHz Intel Itanium-2 CPUs. We used
irregularly distributed matrices from computational chemistry and
astrophysics applications. In addition to performance advantages
of SRUMMA over pdgemm (ScalaPACK/PBLAS) for regularly
distributed matrices as reported in [1], we also present results on
the Linux/Quadrics cluster. Furthermore, we report performance
of communication operations used by SRUMMA on that cluster.

4.1 Performance for regular distribution
In our previous work, was demonstrated that SRUMMA delivers
superior performance over ScaLAPACK pdgemm on the IBM SP,
SGI Altix, Cray X1 and Linux Xeon cluster with Myrinet. The
work described in this paper uses the SGI Altix and a Linux
cluster with a more recent processor (Itanium-2) and the latest
Elan-4 Quadrics network. Figure 7 shows the performance of
SRUMMA and ScaLAPACK/PBLAS pdgemm for regularly
distributed matrix multiplication. For the comparison, we used the
pdgemm routine from PBLAS/ScaLAPACK Version 1.7.
SUMMA [19] is used in practice in ScaLAPACK/PBLAS [20].
The same dgemm (double precision serial matrix multiplication)
routines from a vendor optimized math library (mlib from Hewlett
Packard for IA64) were used in all three parallel algorithms.
Optimum block sizes were chosen empirically for all matrix sizes
and processor counts. Figure 7 shows that for this cluster
configuration, similarly to other platforms [1], SRUMMA delivers
competitive performance to PBLAS pdgemm.

We investigated the performance of MPI send/receive operations
and the ARMCI get operation on the Linux cluster. SGI Altix is
not included in this study as we directly access shared memory in

our matrix multiplication [1]. However, to understand the
performance of the matrix multiplication algorithm on the Linux
cluster with Quadrics Elan-4 network we performed several tests
to measure the role of the underlying communication protocols
with respect to the overall performance model. Our algorithm uses
nonblocking RMA communication, which in principle offers an
excellent potential for overlapping communication with
computations. An increasing amount of computation is gradually
inserted between the initiating nonblocking get call and the wait
completion call. At some point, the sum of the nonblocking call
issue overhead and computation would exceed the idle CPU time,
and hence the total benchmark running time would increase. This
gives us the maximum possible overlap. Experimental results
(Figure 8) indeed confirm that the non-blocking get offers almost
99% overlap for medium- and larger-sized messages on Quadrics
which makes this operation very well suited for overlapping
communication with computations. This validates the
performance model described by Equation 3.

Figure 8. Degree of overlap as a function of message size in
ARMCI on the Linux64 cluster.

% Overlap

90

92

94

96

98

100

100 1000 10000 100000 1000000 10000000

Message Size [Bytes]

%
 o

ve
rla

p

ARMCI NbGet

SRUMMA vs. PBLAS

0

1

2

3

4

5

6

0 200 400 600 800 1000
Processors

A
gg

re
ga

te
 T

er
aF

LO
Ps

4000 (SRUM M A)
8000 (SRUM M A)
16000 (SRUM M A)
4000 (PBLAS)
8000 (PBLAS)
16000 (PBLAS)

Figure 7. Performance of regular distributed matrix
multiplication operation on the Linux64 cluster.

4.2 Experimental results for irregular
distribution
In many scientific applications, a matrix distribution is irregular
because of the underlying physical problem, which involves
variable block sizes on individual processors. To demonstrate the
effectiveness of our proposed algorithm, we used irregularly
distributed matrices in scientific applications, in particular
computational chemistry applications and the N-body problem. In
these applications, parallel matrix multiplication is one of the most
important linear algebra operations and the distribution of the
matrix among processors can significantly impact the performance
of matrix multiplication algorithm.

We used these irregular matrices (Figure 9) and performed
parallel matrix multiplication using the proposed distribution-
independent algorithm (Section 3) and a copy-based algorithm. In
the copy-based algorithm, we created three temporary regular
matrices (i.e. A, B and C) and then redistributed (i.e. copy) the
data [40,43] and performed regular SRUMMA matrix
multiplication. There is a redistribution cost involved in the copy-
based algorithm as the original matrices, which are irregularly
distributed among processors, are redistributed to temporary
regular matrices, which then are uniformly distributed among
processors.

4.2.1 Computational Chemistry Example
Fock matrices [37,38,39] are used in the distributed data SCF
algorithm in massively parallel computational chemistry
applications like NWChem [45]. They result in superior scaling
for smaller molecules and very large systems. The Fock matrix is
distributed by “atom blocks”, that is, elements of the Fock F
belonging to a given atom are all stored on the same processor to
simplify the communication costs for the underlying physical
problem [39]. Therefore, the Fock matrix should be stored in a
square processor grid fashion because of the distribution nature of
the Fock matrix. For example, a Fock matrix of size mxm can be
only be distributed on a processor grid pxq (where p = q).
However, this distribution nature of Fock matrix leads to load
imbalance, and there is also potential load imbalance when p ≠ q.
A simple Fock matrix for H2O is shown in Figure 9a. For
example, the processors that own Oxygen atom blocks have larger
block size when compared to processors owning Hydrogen atom
blocks (see Figure 9a). For our experimental purposes we used
Fock matrices of various sizes: 1798x1798, 3880x3880 and
7096x7096 [38,39]. These are the matrices for human GTPase-
activating protein (Figure 9b) [39].

Experiments were conducted on the Quadrics Linux cluster and
the SGI Altix. Our experimental results (Figure 10) indicate that,
the proposed algorithm, which is memory efficient because
temporary matrices are not needed, is competitive with the copy-
based algorithm. This is because of the redistribution cost (also
shown in the Figure 10) in the copy-based algorithm, as the
redistribution overhead (or communication overhead) is directly
proportional to the number of processors and matrix size. The
proposed algorithm uses O (B2) memory (for temporary matrices)
and copy-based uses O (N2/P) + O (B2) memory, where B is the
block size. This is excluding memory required to store A, B and C
matrices in proposed as well as copy-based algorithms. For
example, let us consider N=3880 and P=16 processors, in the
proposed algorithm, each process consumes only 3 MB extra
memory (2*3*256*256*8, i.e. 2 temporary buffers, 3 matrices, 8
bytes for storing a double and block size as 256) and copy-based
algorithm consumes approximately 25 MB extra memory
(3*(3880*3880/16)*8 + 2*3*(256*256)*8).

Linux cluster results indicate that for small matrices, the copy-
based algorithm seems to perform better because of the relatively
low redistribution cost. For large matrices and large processor
counts, the proposed algorithm outperformed the copy-based
algorithm by at least 10% in most of the cases. This is due to the
following reasons: (i) the proposed algorithm was able to overlap
90% of the communication with computation, (ii) higher
redistribution cost in copy-based algorithm for larger problem
sizes and processor counts. For example, on 240 processors, the
proposed algorithm performed 20% and 16% better than the copy-
based algorithm for matrix sizes 3880 and 7096 respectively. The
percentage improvement is lower for matrix size 7096 when
compared to 3880, because computation cost predominates
communication cost for larger matrices. However, on a perfectly
square processor grid (e.g., 16x16 grid; 256 processors), the copy-
based algorithm performs well because the Fock matrix of human
GTPase-activating protein is almost uniformly distributed among
processors and the redistribution cost is low.

On the other hand, the SGI Altix is a shared memory NUMA
system, in which shared memory data can be cached. Therefore,
neither of the parallel matrix multiplication algorithms requires
explicit communication. As the memory copy cost is relatively
less when compared to the explicit communication (as in the
Linux cluster), the proposed algorithm takes about the same time
as the copy-based algorithm and shows only 5% improvement in
some cases. However, on perfectly square processor counts (say,
64), the copy-based algorithm performs well because the matrix is

H

H H

H

O

O

(a) (c) (d) (b)
Figure 9. (a) Fock (Density) matrix for H2Odistributed on a 3x3 process grid [39]. Basis functions of each atom (assuming each
Hydrogen Oxygen atom has 4 and 10 basis functions) should reside on the same processor because of the nature of the underlying
physics problem. (b) GTPase-activating Protein (c,d) Gaussian distribution of the N-body particles in the computational domain and
spatial decomposition for a 5x5 process grid

almost uniformly distributed among processors and the
redistribution cost is low (local memory access is faster than
remote memory copy in a NUMA system).

Although the proposed algorithm takes about the same time as the
copy-based SRUMMA (only 10% improvement in most cases),
the proposed algorithm is memory-efficient and the algorithm of
choice for applications where it is not practical to redistribute
matrices. Moreover, for a fixed problem size, when the processor
count increases, the impact of the redistribution cost increases thus
affecting scalability. However, the proposed algorithm scales well
as long as there is enough computation to overlap communication.
For example, a 10% communication overlap can result in a 10%

improvement in communication cost.

4.2.2 N-body Problems:
The N-body problem [44] is the problem of finding the motions of
N bodies (particles), given the initial positions, masses, and
velocities, using classical mechanics (i.e., Newton's law of gravity
and Newton's laws of motion). The particles are distributed in a
non-uniform way in the computational space. For our
experimental purposes, we considered the standard Gaussian (or
normal) distribution of particles with three different classes as
shown in Figure 14. Class A is the most irregular case considered
with more particles located toward the center of the computational
domain. The spatial decomposition of the particles in a processor

Figure 10. Performance of three versions of matrix multiplication for various matrix sizes/basis functions (1798, 3880 and 7096)
corresponding to Fock matrix of Human GTPase-activating protein on the Linux cluster and SGI Altix.

Fock Matrix GTPase-act Protein
3880 basis functions

0

0.4

0.8

1.2

1.6

2

0 100 200 300
Processors

Ti
m

e
(s

ec
s)

Proposed

Copy-based

Redistribution Cost

Fock Matrix GTPase Protein
1798 basis functions (SGIAltix)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 16 32 48 64
Processors

Ti
m

e
(s

ec
s)

Proposed
Copy-based
Redistribution cost

Fock Matrix GTPase Protein
7098 basis functions (SGI Altix)

0

5

10

15

20

25

30

35

10 20 30 40 50 60 70

Processors

Ti
m

e
(s

ec
s)

Proposed

Copy-based

Redistribution cost

Fock Matrix GTPase-act protein
7096 basis functions

0

2

4

6

8

10

12

0 100 200 300
Processors

Ti
m

e
(s

ec
s)

Proposed

Copy-based

Redistribution Cost

Fock Matrix GTPase-act Protein
1798 basis functions

0

0.05

0.1

0.15

0.2

0.25

0.3

0 100 200 300
Processors

Ti
m

e
(s

ec
s)

Proposed

Copy-based
Redistribution Cost

Fock Matrix GTPase Protein
3880 basis functions (SGI Altix)

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

0 20 40 60 80

Processors

Ti
m

e
(S

ec
s)

Proposed

Copy-based
Redistribution cost

grid results in an irregular distribution of particles among
processors as shown in Figure 9c and 9d; therefore, the underlying
matrices in this application are irregular. For example, the
processors, which own a block from the center of the
computational domain, have a much larger block size when
compared to processors that own corner blocks (Figure 9d).

Experiments were conducted on the two platforms for all three
classes of Gaussian distribution (Figure 14). We present results for
square matrices of size 2048, 4096, and 8192. Although the
performance results for the proposed algorithm are uniformly
good for all the cases we studied, because of space limitations, we

only include results for 1) all three problem sizes for class B, and
2) a medium problem size (4096) for classes A and C. Figures 11
and 12 illustrate that the proposed algorithm is competitive as
well. The N-body results are similar to the Fock matrix example
because the problems sizes and computational structure are almost
same in both examples. For all the three classes of Gaussian
distribution, the proposed algorithm consistently performed well
on both platforms. The Copy-based algorithm performs somewhat
better for perfectly square processor grid (e.g, 225, 256
processors), because of the relatively low redistribution cost.
Linux cluster results illustrate that for larger processor counts and
smaller problem sizes (e.g 2048), the proposed algorithm

Figure 11. Performance of three versions of matrix multiplication for irregularly distributed matrices (Gaussian distribution for N-
body problems) on the Linux cluster.

N-Body Gaussian Distribution
CLASS B (2048 particles)

0

0.05

0.1

0.15

0.2

0.25

0 50 100 150 200 250 300

Processors

Ti
m

e
(s

ec
s)

Proposed

Copy-based

Redistribution Cost

N-Body Gaussian Distribution
CLASS B (4096 particles)

0

0.5

1

1.5

2

2.5

3

3.5

0 100 200 300

Processors

Ti
m

e
(s

ec
s)

Proposed

Copy-based

Redistribution Cost

N-Body Gaussian Distribution
CLASS B (8192 particles)

0

4

8

12

16

0 50 100 150 200 250 300

Processors

Ti
m

e
(s

ec
s)

Proposed
Copy-based
Redistribution Cost

N-Body Gaussian Distribution
CLASS A (4096 particles)

0

0.5

1

1.5

2

2.5

3

3.5

0 50 100 150 200 250 300

Processors

Ti
m

e
(s

ec
s)

Proposed
Copy-based
Redistribution Cost

N-Body Gaussian Distribution
CLASS C (4096 particles)

0

0.5

1

1.5

2

2.5

3

3.5

0 50 100 150 200 250 300

Processors

Ti
m

e
(s

ec
s)

Proposed

Copy-based

Redistribution Cost

performed better than the copy-based because of the following
reasons: (i) the proposed algorithm was able to overlap
communication with computation, for example, a 10%
communication overlap can result in a 10% improvement in
communication cost; (ii) higher redistribution cost in copy-based
algorithm when compared to the computation cost.

4.2.3 Degree of Irregularity
The quantification on how the degree of irregularity impacts the
performance of both algorithms for matrix size 4096 on Linux
cluster (proposed and copy-based) is shown in Figure 13. Due to
space limitations, we are only showing Linux cluster performance
numbers. The SGI Altix results are similar to those in Figure 13.

Class A is the most irregular case as shown in Figure 14 and
matrices of class C are well-balanced compared to class A
matrices. In Figure 14, degree of irregularity (peak of distribution
function) is 2, 4 and 8 for class C, B, and A respectively (i.e. class
A is 2 and 4 times irregular when compared to class B and C
respectively). In spite of a huge variation in degree of irregularity,
it is interesting to see that the performance of the proposed
algorithm varies only 10-20% (see, Figure 13) for various classes
of matrix distribution. The proposed algorithm scales well for
various processor counts and classes of matrix distributions. For
class C style matrices (low degree of irregularity), the copy-based
algorithm performs slightly better than the proposed algorithm as
the redistribution cost is less. For class A style matrices, the

Figure 12. Performance of three versions of the matrix multiplication for irregularly distributed matrices (Gaussian distribution
for N-body problems) on the SGI Altix.

N-Body Gaussian Distribution
Class B (2048 particles)

0.00

0.20

0.40

0.60

0 16 32 48 64

Processors

Ti
m

e
(s

ec
s)

Proposed

Copy-based

Redistribution cost

N-Body Gaussian Distribution
Class B (4096 particles)

0

1

2

3

4

5

6

0 16 32 48 64

Processors

Ti
m

e
(s

ec
s)

Proposed

Copy-based

Redistribution cost

N-Body Gaussian Distribution
Class B (8192 Particles)

0

5

10

15

20

25

30

35

0 16 32 48 64

Processors

Ti
m

e
(S

ec
s)

Proposed

Copy-based

Redistribution cost

N-body Gaussian Distribution
Class C (4096 particles)

0

2

4

6

0 16 32 48 64

Processors

Ti
m

e
(s

ec
s)

Proposed
Copy-based
Redistribution cost

N-body Gaussian Distribution
Class A (4096 particles)

0

1

2

3

4

5

6

7

8

0 16 32 48 64

Processors

Ti
m

e
(s

ec
s)

Proposed

Copy-based
Redistribution cost

redistribution cost is high and therefore, the proposed algorithm is
competitive to the copy-based algorithm. For larger number of
processors (say, 256 in our case), the performance of copy-based
algorithm degrades because the redistribution cost predominates
the computation cost.

4.2.4 Avoidance of communication contention
To demonstrate the effectiveness of diagonal-shift algorithm
(Figure 4) for reducing communication contention we enabled and
disabled the diagonal-shift algorithm in the proposed algorithm
for an N-body class B problem (2048 particles). Figure 15
illustrates that the diagonal-shift algorithm in the proposed
algorithm improves performance by effectively reducing network
contention on clusters.

5. SUMMARY AND CONCLUSIONS
This paper describes a new dense matrix multiplication algorithm
that can efficiently deal with irregularly distributed matrices while
minimizing memory consumption. Generalized SRUMMA
exploits shared memory and nonblocking RMA protocols on
clusters and shared memory systems. The distribution independent
algorithm delivers performance as good as the algorithm for
regularly distributed matrices combined with the necessary data
redistributions. However, because it avoids redistributions and the
creation of temporary matrices, it is preferable in practice
especially for problems with large matrices or when system
memory constrains, on architectures such as the IBM Blue
Gene/L, make creating temporary arrays and redistribution
impractical.

6. REFERENCES
[1] M. Krishnan, J. Nieplocha, “SRUMMA: A Matrix
Multiplication Algorithm Suitable for Clusters and Scalable
Shared Memory Systems”, Proc. IPDPS’04, 2004.
[2] L. E. Cannon, “A cellular computer to implement the
Kalman Filter Algorithm”, Ph.D. dissertation, Montana State
University, 1969.
[3] G. C. Fox, S. W. Otto, A. J. G. Hey, “Matrix algorithms on
a hypercube I: Matrix multiplication”, Parallel Computing, vol.
4, pp. 17-31, 1987.
[4] G. C. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and
D. Walker, Solving Problems on Concurrent Processors. vol. 1,
Prentice Hall, 1988.
[5] G.H. Golub, C.H Van Loan. Matrix Computations. Johns
Hopkins University Press, 1989.
[6] J. Berntsen, Communication efficient matrix multiplication
on hypercubes, Parallel Computing, vol. 12, 1989.
[7] A. Gupta and V. Kumar, “Scalability of Parallel Algorithms
for Matrix Multiplication”, ICPP’93, 1993.

Effect of Network Contention

0.00

0.05

0.10

0.15

0.20

0.25

0 100 200 300
Processors

Ti
m

e
(s

ec
s)

No diagonal-shift
Diagonal-shift

Figure 15. Reducing network contention on Linux cluster.

Figure 14. Three classes of N-body distribution used.

N-b od y G a ussia n Distrib u tio n

0

10

20

30

40

50

60

70

80

90

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0
x

y

Clas s A

Clas s B

Clas s C

Figure 13. Degree of irregularity for matrix size 4096. Performance of the proposed and copy-based algorithm for various
degrees of irregularity of matrix distribution on the Linux cluster.

Copy-based

0.00

0.20

0.40

0.60

0.80

1.00

64 128 256
Processors

Ti
m

e
(s

ec
s)

Class A Class B Class C

Proposed Algorithm

0.00

0.20

0.40

0.60

0.80

1.00

64 128 256
Processors

Ti
m

e
(s

ec
s)

Class A Class B Class C

[8] C. Lin and L.Snyder, “A matrix product algorithm and its
comparative performance on hypercubes”, SHPCC ‘92.
[9] Q. Luo and J. B. Drake, A Scalable Parallel Strassen's
Matrix Multiply Algorithm for Distributed Memory Computers,
http://citeseer.nj.nec.com/517382.html
[10] S. Huss-Lederman, E. M. Jacobson, and A. Tsao,
"Comparison of Scalable Parallel Matrix Multiplication
Libraries," in Proceedings of the Scalable Parallel Libraries
Conference, 1994.
[11] C. T. Ho, S. L. Johnsson, A. Edelman, Matrix multiplication
on hypercubes using full bandwidth and constant storage, Proc. 6
Distributed Memory Computing Conference. 1991.
[12] H. Gupta and P. Sadayappan, “Communication Efficient
Matrix Multiplication on Hypercubes”, in Proceedings of the Sixth
ACM Symposium on Parallel Algorithms and Architectures, 1994.
[13] J. Li, A. Skjellum, and R. D. Falgout, “A Poly-Algorithm
for Parallel Dense Matrix Multiplication on Two-Dimensional
Process Grid Topologies,” Concurrency, Practice and Experience,
vol. 9(5), pp. 345–389, 1997.
[14] E. Dekel, D. Nassimi, S. Sahni, Parallel matrix and graph
algorithms, SIAM J. Computing, vol. 10, 1981.
[15] S. Ranka, S. Sahni. Hypercube Algorithms for Image
Processing and Pattern Recognition. Springer-Verlag, 1990.
[16] J. Choi, J. Dongarra, and D. W. Walker, “PUMMA: Parallel
Universal Matrix Multiplication Algorithms on distributed
memory concurrent computers,” Concurrency: Practice and
Experience, vol. 6(7), 1994.
[17] S. Huss-Lederman, E. Jacobson, A. Tsao, and G. Zhang,
“Matrix Multiplication on the Intel Touchstone DELTA”,
Concurrency: Practice and Experience, vol. 6 (7) . Oct 1994.
[18] R. C. Agarwal, F. Gustavson, M. Zubair, A high
performance matrix multiplication algorithm on a distributed
memory parallel computer using overlapped communication, IBM
J. Research and Development, vol. 38 (6), 1994.
[19] R. van de Geijn, R. and J. Watts, “SUMMA: Scalable
Universal Matrix Multiplication Algorithm,” Concurrency:
Practice and Experience, vol. 9(4), pp. 255–274, April 1997.
[20] J. Choi, J. Dongarra, S. Ostrouchov, A. Petitet, D. Walker,
and, R. C. Whaley, “A Proposal for a Set of Parallel Basic Linear
Algebra Subprograms”, University of Tennessee, Tech. Rep. CS-
95-292, May 1995.
[21] L. S. Blackford et. al., ScaLAPACK Users' Guide, SIAM,
1997, Philadelphia, PA.
[22] J. Choi, “A Fast Scalable Universal Matrix Multiplication
Algorithm on Distributed-Memory Concurrent Computers”, in
Proceedings of the 11th International Parallel Processing
Symposium (IPPS '97), 1997.
[23] C. Addison and Y. Ren, “OpenMP Issues Arising in the
Development of Parallel BLAS and LAPACK libraries”, in
Proceedings EWOMP’01. 2001.
[24] G.R. Luecke, W. Lin, “Scalability and Performance of
OpenMP and MPI on a 128-Processor SGI Origin 2000”,
Concurrency and Computation: Practice and Experience, vol. 13,
pp 905-928. 2001.
[25] M. Wu, S. Aluru, and R. A. Kendall, “Mixed Mode Matrix
Multiplication”, Intl. Conf. Cluster Computing ‘02.

[26] T. Betcke, “Performance analysis of various parallelization
methods for BLAS3 routines on cluster architectures”,John von
Neumann-Instituts für Computing, Tech. Rep. FZJ-ZAM-IB-
2000-15, 2000.
[27] J. L. Träff, H. Ritzdorf, R. Hempel “The Implementation of
MPI-2 One-Sided Communication for the NEC SX-5”, in
Proceedings of Supercomputing, 2000.
[28] J. Liu, J. Wu, S. P. Kinis, P. Wyckoff, and D. K. Panda,
High Performance RDMA-Based MPI Implementation over
InfiniBand, ACM Intl. Conference on Supercomputing, 2003.
[29] J. Nieplocha, V. Tipparaju, M. Krishnan, G. Santhanaraman,
and D.K. Panda,” Optimizing Mechanisms for Latency Tolerance
in Remote Memory Access Communication on Clusters”, IEEE
CLUSTER’03, 2003.
[30] A. Grama, A. Gupta, G. Karypis, and V. Kumar,
Introduction to Parallel Computing, Addison Wesley, 2003.
[31] Cray Online documentation. Optimizing Applications on the
Cray X1TM System. http://www.cray.com/craydoc/20/manuals/S-
2315-50/html-S-2315-50/S-2315-50-toc.html
[32] J. Nieplocha, B. Carpenter, ARMCI: A Portable Remote
Memory Copy Library for Distributed Array Libraries and
Compiler Run-time Systems, RTSPP IPPS/SDP, 1999.
[33] ARMCI Web page.
http://www.emsl.pnl.gov/docs/parsoft/armci/
[34] J. Nieplocha, V. Tipparaju, J. Ju, and E. Apra, “One-sided
communication on Myrinet”, Cluster Computing, 2003.
[35] J. Nieplocha, V. Tipparaju, A. Saify, and D. Panda,
“Protocols and Strategies for Optimizing Remote Memory
Operations on Clusters”, Proc CAC/IPDPS’02.2002.
[36] M. Krishnan and J. Nieplocha, "Optimizing Parallel
Multiplication Operation for Rectangular and Transposed
Matrices," In Proceedings of 10th IEEE ICPADS. 2004.
[37] T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989).
[38] Y. Alexeev, M. Valiev, D. A. Dixon, T. L. Windus, "Ab
initio study of catalytic GTP hydrolysis", J. of ACS, ‘04.
[39] I. Foster et al. "Toward High-Performance Computational
Chemistry: I. Scalable Fock Matrix Construction Algorithms",
Journal of computational chemistry, vol. 17, No. 1, 109-123,
1996.
[40] C. Hsu, Y. Chung, and C. Dow, Efficient Methods for
Multi-Dimensional Array Redistribution, Journal of
Supercomputing, 17, 23–46, 2000.
[41] C. Edwards, P. Geng, A. Patra, and R.Van De Geign,
"Parallel Matrix Distributions: Have we been doing it all wrong?",
TR-95-39, Department of Computer Sciences, University of
Texas, Oct. 1995.
[42] Hyuk-Jae Lee, J.A.B. Fortes, Toward data distribution
independent parallel matrix multiplication, IPDPS, 1995.
[43] S. D. Kaushik, C.-H. Huangl, R. W. Johnson2, and P.
Sadayappan, "An Approach to Communication-Efficient Data
Redistribution", Proc. Supercomputing’94, pp: 364-373,1994.
[44] Banicescu, Ioana and R. Lu, Experiences with Fractiling in
N-Body Simulations, HPC Symposium, 1998.
[45] Kendall et al, “High Performance Computational
Chemistry: an Overview of NWChem a Distributed Parallel
Application", Computer Phys. Comm., 2000, 128, 260-283.

