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The reliance on object or people detection is rapidly growing beyond # object 2,603 8,310 661 4,459 1,334 1,783
surveillance to industrial and social applications. Most high accuracy person/
object detection algorithms, such as the Histogram of Oriented Gradients (HOG), P ”
achieve very low throughput (< 1 frame/sec) due to their computational precision = o |
complexity. An FPGA implementation of these algorithms does increase the 4 P+ 13"'5“ .
throughput, however the floating-point implementation requires roughly 10x the recall = 1P g 02| N egkon
area of a fixed-point and achieves a clock frequency 3x lower. We have \ IP+FN Eoo.so-
evaluated the fixed-point implementation of HOG on 10,000 benchmark images TP true positives g 048] . . ¢
with known ground truth while varying the data bit width. The results show that FP: false positives Y PR S ¥
13 bits fixed point data achieves as good or better detection accuracy than the TN: false negatives »
reference OpenCV floating-point version. S @L”bf\o&c’@&“@&”’@m@&

Fig. 3 Overall detection results.
The FPGA implementation achieves a 68.7x higher throughput than a high-end Values averaged from all benchmarks

CPU, 5.1x higher than a high-end GPU, and 7.8x higher than the same
implementation using floating-point on the same FPGA. The energy expenditure,

measured in Joules per frame, are 117x lower than a high-end CPU and 24x than Effects of data type & size on resource utilization & frequency ,
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One of the most successful and popular object detection algorithm FLOAT FIX-27 FIX-23 FIX-19 FIX-17 FIX16 FIX-15 FIX14 FIX-13
Developed for pedestrian detection [1] Data size
High detection accuracy but slow to compute EXPERIMENTAL EVALUATION
Use. hardwar.e (FPGA) to accelerate computation FPGA implementation:
¢ Detection Algorithm 13 bit fixed-point data, Convey HC-2ex, Xilinx Virtex-6 LX760 FPGAs, 16
Orientation and Magnitudes computed from pixel gradients (dx and dy) memory channels of 64-bit per FPGA at 150 MHz.
Magnitudes binned into cells (8*8 pixels) based on orientation, nine bins 15 HOG-Engines executing in parallel. One channel as shared output
per cell (Fig. 1) Single FPGA execution speed: 27.4 ms/frame
Grids of overlapping blocks form detection window (Fig.2) CPU: Intel Xeon 5220  GPU: Nvidia K20

Window size 96*48 (11*5 blocks) [2,3]

Use densely scanned window for increased detection performance
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Fig.2 lllustration of HOG cells, blocks and
window

Fig.1 HOG cell binning
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¢ Fix-13: better performance than floating-point (Fig. 3, higher is better)




