# Industry standard benchmarking of embedded systems

challenges, solutions, and opportunities

Shay Gal - On
Director of Software, EEMBC
shay@eembc.org





## EEMBC Quick Background: Industry-Standard Benchmarks for the Embedded Industry

- EEMBC formed in 1997 as non-profit consortium
- Defining and developing benchmarks
- Targeting processors and systems
- Expansive Industry Support
  - 43 members (silicon vendors, tool vendors and OEMs)
  - >80 commercial licensees
  - >200 university licensees





#### WHAT IS A BENCHMARK?

- An established point of reference against which devices can be measured, comparing performance, reliability, efficiency etc.
- Benchmarks are being abused.
  - Marketing tools
  - Sales tools
  - Inaccurate/biased measurements
- Benchmarks provide crucial data



#### WHAT MAKES A GOOD EMBEDDED BENCHMARK?

(AND WHY DO WE NEED MORE THEN ONE?)

- Relevant to the target audience.
  - Who are the users? Marketing? Engineering? Consumer?
  - Represent real usage of the device?
- Repeatable (so we can trust the results).
- Impartial/Fair (compare platforms).
- Standardized?
- Resistant to mistakes/cheating?
- Portable / available on many platforms?
- Easy to understand? Easy to compare? Other?

Unfortunately, one number cannot tell the whole story...



#### **WORST BENCHMARK PITFALL?**

- The "Magic Bullet" number
  - Easy for consumers and marketing people to understand
  - But, the devil is always in the details
- Worse yet, many times generated using flawed methodology!
  - Documented if in source form, could even seem reasonable
  - Mostly hidden otherwise
    - Though can be deduced with due diligence
  - Let me illustrate ...



## So, a benchmark expert entered a Store....





http://bitchmagazine.org/post/beyond-the-panel-a interview-with-danielle-corsetto-of-girls-with-



## So, a "benchmark expert" entered a Store....



I will get both and pay only \$2,240 altogether!

They want \$2,700 for the server and \$100 for the iPod.



## So, a "benchmark expert" entered an Store....

Ma'am you are \$560 short. But the average of 10% and 50% is 30% and 70% of \$3,200 is \$2,240.







## So, a "benchmark expert entered" an Store....

Ma'am you cannot take the arithmetic average of percentages!

But... that is how Antutu calculates the score (not to mention academic research papers)!







### What is unique for embedded benchmarking?

- Poor standards (except in few markets)
  - How do you apply a benchmark when the DUTs are inherently different in functionality?
- Energy consumption as important as (sometimes more important then) performance
  - Note energy and not power
- Duty cycles
  - Low power modes, and idle time part of normal operation and need to be factored.
- Specific workloads many times more important then generic indicators
  - motor control, printer, router etc.
- Non uniform systems
  - Master + DSP + GPU
  - Motor control + Safety
  - Etc...





#### **BENCHMARKING SOLUTIONS**

- Generic benchmarks
  - CoreMark, Dhrystone, SPEC-CPU etc...
- Application / Platform specific solutions
  - BrowsingBench, ANDEBench, SPEC-JBB etc...
- Black box / data benchmarks
  - ULPBench, ETCPBench, DPIBench



#### **GENERIC SOLUTIONS**

- Commonly throughput benchmarks
  - Easiest to develop
- How realistic is this?
  - Depends on the target (router vs. glucose meter vs. smartphone)
  - Predictions made based on this type of benchmark are better then MHz or number of cores, but for most embedded solutions can be misleading ...
- How to account for multiple cores? (not necessarily all of the same capabilities)



## CORE FUNCTIONALITY FOR MULTIPLE CORES?





## MULTIBENCH (IP REASSEMBLY)

#### Different ISA



- IP-reassembly workload over 4M, one platform actually drops in performance!
- How do we design benchmarks that are relevant to the hardware being tested?

#### 3 Core



#### Many Core





#### **CLASSIFICATION AND PERFORMANCE PREDICTION**



Correlation based feature subset selection + Genetic analysis. 8 data points for 80% accuracy in performance prediction.



## APPLICATION/PLATFORM SPECIFIC

- Choose a problem that is relevant across a wide range of devices.
- Define in detail the methodology used to test the devices.
- Rely on the devices under test to already have a solution for the problem (since it is a relevant problem).
- Allows us to test every facet of the platform under test!
- But requires a common problem, and a fully developed platform... Also tend to result in a benchmark that is "too complex" to be useful for anything but the particular application used.

#### **BROWSING BENCH**

- The benchmark is a local web server.
- The target must have a browser.
- Use a common application that is available on target devices.
- Can test heterogeneous systems.





#### **BROWSINGBENCH MULTICORE**

- Legend:
  - C<N>V<K>
    - N: Number of physical cores
    - K: Number of virtual cores per physical core
- Full scale scenario testing a complex multicore system





## **Latency Effects**



- Latency is important since it is present in real world use case.
- Example Phone has an effective optimization for high latency connections
- Y-axis shows BrowsingBench score
  - Left axis is for high performance platform, right axis is phone





#### PLATFORM SPECIFIC

 Fixing on a platform allows using system APIs provided by that platform, and targeting important aspects of that platform.

#### Examples:

- LMBench generic Linux functionality test distributed as source.
  - Pitfalls people using it to compare different hardware platforms without understanding how it works.
    - Memory effects with SMP.
    - Memory latency with hardware assists. Etc.
- ANDEBench (and other android benchmarks)
  - Pitfalls distributed as binaries, used by consumers who do not understand what the benchmarks do...

#### ANDEBENCHV1 RESULTS

- Native scales
  - As expected
- Java does not
  - 3x scale for 4 core



- Native scales to 2
  - But then OS effects
- Java does not
  - 2 core degrades





#### **ANDEBENCH PRO**

 Fixing on a platform such as android allows us also to call system APIs to perform complex tasks that are still

An EEMBC Benchmark

**Options** 

common building blocks

- Image filters and effects
- Database API
- XML parsing
- Cryptography
- Graphics
- Populating GUI elements

 Is this a fair benchmark, considering that the services being called can be implemented differently on different platforms? And talk about benchmark abuse ...



PC COMPONENTS V

SMARTPHONES & TABLETS .

AMD CENTER

TRENDING TOPICS

ANANDTECH

INTEL | GPUS |

CPUS : SMARTPHONES

S : A

STORAGE :

TABLETS

Home > Smartphones

## They're (Almost) All Dirty: The State of Cheating in Android Benchmarks

360 Comments

by Anand Lal Shimpi & Brian Klug on October 2, 2013 12:30 РМ EST

+ Add A Comment

Posted in Smartphones Samsung galaxy note 3





#### **DATA DRIVEN BENCHAMRKS**

- Somewhat similar to scenario, these are even more loosely defined.
  - How fast can you compute an N node iteration of algorithm M with conditions X,Y,Z
    - E.g. 1200 pt FFT with SNR of 60dB or better
- Require (potentially) significant effort on each platform used.
- At times tests the engineer implementing the software more then the hardware. Unfortunately, that engineer does not come attached to the device under test...



#### **ULPBENCH**

 The workload is defined a unit of work to be done once per second. The metric is the average energy consumed per second (measured using specific hardware).







#### How does **EEMBC** work?

- Industry consortium lets all vendors provide guidance during requirement definition, and feedback throughout the implementation process.
  - Open forum and open development
  - Democratic process (1 company, 1 vote)
- Content experts from companies of consultants used for each specific target benchmark, with benchmarking specific core expertise maintained by EEMBC.
  - Drawing on industry leaders for each benchmark
  - Avoid benchmarking pitfalls
- Unbiased certification available to members



#### **SUMMARY**

- Embedded devices in particular require great care in benchmark development.
- One benchmark will not resolve all questions about a device, thus we continue to develop new benchmarks.
- Creating good benchmarks is not easy, but working as an industry consortium helps.

