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@[ PAKCK Overview

 Set of DoD applications surveyed

* Set of key kernels identified/implemented
— Dense kernels
— Sparse kernels
* Specific target architectures chosen
— ASIC
— FPGA
— Multicore: CPU and GPU

* Methodologies for power/performance characterization on
architectures identified

* Initial power/performance characterization for some kernels/
applications

* Simulation framework LLMORE extended

— Support for dynamic power models and additional architectures
— Methodology for power simulations defined
— Initial experiments of “possible”
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@[ Kernel Selection: Three Key DoD Domains

Signal & Image
Processing

Encryption
I—» -> -> >

Databases, Big Data,

h Anal

Key kernel: AES

« Surveyed three application domains — key power

Key kernels: GEMV, FFT,
matrix element-wise multiply

kernels identified

* Implementations of key kernels gathered/written

Key kernels: SpGEMM, SpGEMV,
BFS

\ Additional info )

GEMV = dense matrix-vector multiplication, SpGEMM = sparse matrix-matrix multiplication, [>

SpGEMV= sparse matrix-vector multiplication, BFS = breadth first search
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@ Databases, Big Data, Graph Analysis

ISR Social Cyber

v
| N SR

* Graphs represent entities * Graphs represent * Graphs represent
and relationships detected relationships between communication patterns of
through multi-INT sources individuals or documents computers on a network

* 1,000s — 1,000,000s tracks * 10,000s — 10,000,000s * 1,000,000s — 1,000,000,000s
and locations individual and interactions network events

+ GOAL: Identify anomalous * GOAL.: Identify hidden * GOAL: Detect cyber attacks
patterns of life social networks or malicious software

Cross-Mission Challenge:
Detection of subtle patterns in massive multi-source noisy datasets

‘Source: Ben Miller, MITLL
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@ Key Kernels in Graph Analytics

Sparse matrix-dense vector Sparse matrix-matrix :

i multiplication (SpMV) mullotiplication (SpGEMM) SHEECU MR (217

» Workhorse of sparse » Formation of * Fundamental graph
iterative methods correlation matrices search algorithm
(eigensolvers, CG, » DNA sequence » Graph 500 benchmark
GMRES, etc.) matching « Simple algorithm that

» Signal processing for » Graph clustering stresses traditional
graphs architectures

Computational challenges
— Sparsity of data
— lrregular data
— Lack of data locality (spatial and temporal)
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@[ Performance Challenges in Graph Computations
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Performance for sparse linear algebra/graph operations significantly
worse than dense linear algebra operations on COTS processors

_Source: Jeremy Kepner, MITLL
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Computational Architecture Choices

Specific
Architecture

Method of Power
characterization

Multicore 1

Multicore 2

Low Power Xilinx

65 nm CMOS GPGPU: )
IBM 10 LPe (Spartan 6, NVIDIA Eermi Intel Sandy Bridge
Samsung 45 nm)
Simulat Simulat «  PAPI/NVML +  PAPI/RAPL
imulator imulator . LLMORE . LLMORE

Four specific architectures chosen

Methodologies for power performance characterization of four

architectures developed
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Computational Architectures Comparison

Cost of

Expected power

Programmability .
. . Parallelism
of kernels repurposing consumption
Complex desian: Time consuming Can be designed
ASIC plex design: | and expensive to O(1 mW) to be highly
long fab time
refab parallel
FPGA
-~ . Highly parallel
LU e ~200 W due to 100s of
ermi programming CUDA cores
. proghf:rl:l%ing Limited by
Sa.ndy languages LI AT el ki number of cores
Bridge
supported
Low Medium High Very High

Each architecture has different advantages and disadvantages

LINCOLN LABORATORY
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[E]

Characterizing CPU Power/Performance
with PAPI

Performance Application
Programming Interface (PAPI)
provides access to hardware
counters to monitor
performance

— Timing data

— Cache hits/misses

— Energy counters

* Running Average Power Limit
(RAPL) for SandyBridge CPU

* NVIDIA Management Library
(NVML) for NVIDIA GPGPU

PAPI works across platforms

Accurate power estimates from
energy components

Low Level High Level
User API User API

PAPI FRAMEWORK

Developer API

PAPI COMPONENT
(CPU)

RAPL Estimates v Measured Power Usage

45
40 r—
Eul— J v f .y \J

25
20 4
15 {i”
10

5
0

1

Power (W)

0 50 100 150 200 250
Time (s)

— CPU-predicted = CPU-actual
— PG-predicted — PG-actual
- Package-predicted — Package-actual

Rotem et. al., IEEE Micro, 2012
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@ PAPI Power Measurements

« CPU Plan * GPGPU Plan
— Used PAPI to access RAPL — Use NVML
— Hardware counters provide — Hardware Counters
access to: provide access to
= Package energy Power (GPU, memory)
- DRAM energy Temperature
= Energy of “Power Plane - Measurer_nent_s:_
0” (includes cores and caches) Power in milliWatts (mW)
— Measurements: Temperature in Celsius (C)

— Power Accuracy (Fermi)

Within +/- 5% current
draw*

= In nanoJoules (nJ)
= Sampled every microsecond

— Averaged numerous trials to
obtain accurate power
estimates

*NVML API Reference Manual, v 4.304.55,
NVIDI, Oct. 2012
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@ Preliminary Power Characterization

1.00E+03
1.00E+02_________‘__ _______________________________
o PERFECT Target
2 1.00E+01 e « 75 GFLOPS/W can be
S~ - =
£ ®AES achieved with ASIC for
= & .
;. 1.00E+00 " 2D FFT certain kernels
g ® 1D FFT(M) « FPGAs are close to
; 1.00E-01 GEMV goal
g e + EWMM - Sparse kernels
T +SpMv perform orders of
g oros + W SpGEMM magnitude lower than
' . *BFS dense kernels
1.00E-04 L]
O
1.00E-05 3 - S S
v & C;z@Q &

« 75 GFLOPS/W is very challenging target
for software programmable architectures J
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@ Exploration of the Possible
CPU and GPGPU Simulations using LLMORE

* MIT Lincoln Laboratory’s Mapping and Optimization Runtime
Environment (LLMORE) used for power and performance
simulations of the possible

* LLMORE: parallel framework/environment for
— Optimizing data to processor mapping for parallel applications
— Simulating and optimizing new (and existing) architectures

— Generating performance data (runtime, power, etc.)
— Code generation and execution for target architectures

* LLMORE Simulations and PAKCK
— Yield power and performance data for key computational kernels
— Support for CPU and GPU architectures

— [Easy to add support for new architectures
Gives performance characterization of experimental architectures
Hybrid systems

LLMORE provides simulation support for key kernels on existing and future systems
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[E]

LLMORE Simulator Framework

A

LLMORE Simulator Framework

W LLMORE

. External to LLMORE

High level simulation for
understanding big
picture

Fast

Low fidelity

Input: LLMORE MI code

Low level simulator for
high fidelity simulation

* Focus: simulation of big
systems, networks

* Support for x86

instructions

Input: C++ code

Low level simulator for
high fidelity simulation
Focus: simulations of
processor with non x86
instructions

Support for custom
instructions, custom
synchronization

Input: program trace

Mi=machine independent

LLMORE interfaces to multiple simulators to support the
analysis needs of different architectures.
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@ LLMORE Overview

Parameters
Photonic

BW = 320 Gb/s
P=16

User Code

BESE
EiSiSE
LSS
BiSEE

)

Output:
LLMORE One or more

)

Architecture
Model

GEEE
EiSSE
HiSEE
MiSisE

for i=1:N
computel()
compute2()
compute3 ()
end

Production quality software that is extendable
to new applications, architectures
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@ Sample LLMORE Simulation — 2D FFT

int main()

{

Problem size: 408S¢
Simulator results:
time: 0.0460143858
flopCount: 20132&5320
dynamicPower: 175.0035
GFLOPs: 43.7530
GFLOPs/W: 0.25

B.fftm(A,0);
C.cornerTurn(B);
D.fftm(C,1);
User
Code

}
Sandy Bridge Client

DDR3 Memory}
Controllers
v v 12

12

2x8B @ 2.13GT/s (Est) 2x4b@2.5GT/s  2x16b @ SGT/s

LLMORE

Architecture
Model

~

GFLOPS/W

LLMORE simulates running 2D FFT on Sandy Bridge CPU
and produces performance data

LINCOLN LABORATORY
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I&] LLMORE Design: Detailed View

| Performance data
Map Converter

Builder .
Simulator M

pr— T LLMORE
output
LLMORE Mapped AST MI Code
input Generator
Exit condition MI code

Parser

AST
- Builder
LLMORE Analyzer and Optimizer

AST=abstract syntax tree, MI=machine independent

LLMORE requires coordinated interaction of multiple components
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@ LLMORE: Exploration of the Possible

LLMORE used to exblore energy

120 —." :
f ... trade space for compute and
100 . : - memory operations (scaling the

40_, : R

GFLOPS/W

......

Simulation indicates 50x-100x energy improvement needed
in Intel Sandy Bridge to obtain 75 GFLOPS/W
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@ Other Key Benchmark Suites

High performance Linpack
* STREAM
* FFT
* RandomAccess

* Communication bandwidth and
latency (b_eff)

* DGEMM & PTRANS

- --hpecchallenge
* Front-end stream processing
kernels
* Back-end data analytics kernels

* Three scalable synthetic compact
applications (SSCAs)

—  Pattern matching, graph analysis,
synthetic aperture radar

* Data generator
* Breadth-first search

HPC Graph Analysis (Georgia Tech)

* Data generator

* Classify large sets
* Extract subgraphs
* Graph clustering

* graphanalysis.org
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@ Parallel Computing Architecture Issues

Computer Architecture

Standard Parallel

cru|| [|cpu|| fcrPu|| || cPU
[Disk | | [ Disk]

-

CPU

CPU

CPU

CPU

[ Disk |

[ Disk |

Corresponding
Memory Hierarchy

Registers

I Instr. Operands

| Blocks

h

Messages

I Pages

Performance
Implications

Increasing Bandwidth
Increasing Programmability

Increasing Latency

« Standard architecture produces a “steep” multi-layered memory hierarchy
Programmer must manage this hierarchy to get good performance

Disk

Increasing Capacity
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@ HPC Challenge Benchmarks

HPC Challenge

Corresponding

Benchmark Memory Hierarchy

*Top500: solves a system
Ax=b T~

* STREAM: vector operations
A=B+sxC —

—

Z = FFT(X) latenc
* RandomAccess: random updates
T(i) = XOR( T(i), r)

*|lozone: Read and write to disk =

Registers

I Instr. Operands

| Blocks

*FFT: 1D Fast Fourier Transform w}_

Messages

I Pages

(Not part of HPC Challenge)

Disk

« HPC Challenge with lozone measures this hierarchy
« Can determine whether each level of hierarchy is functioning properly
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@ HPEC Challenge: UPEE

Kernel Benchmark Selection PCA

Broad Processing Specific Kernels

Categories

“Front-end Processing” Signal/lmage Processing

- Data independent, * Finite Impulse Response Filter (FIR)
stream-oriented .| * QR Factorization (QR)

» Signal processing, « Singular Value Decomposition (SVD)
image processing, » Constant False Alarm Rate Detection
high-speed network (CFAR)
communication

— Communication
> « Corner Turn (CT)

“Back-end Processing” Information/Knowledge Processing
« Data dependent, thread .. . )
TG * Graph Optimization via Genetic

y " Algorithm (GA)
 Pattern Match (PM)
» Real-time Database Operations (DB)

* Information processing,
knowledge processing
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@ HPEC Challenge: MPES
\ Signal and Image Processing Kernels  PEA

FIR QR
Data Set 1:
2 _ Input Matrix ' M1F(;Itersff_ ont
< (~10 coefficients) A |:> Q . R
©
5 Data Set 2: (MxN) (MxM) (MxN)
= M Filters
(>100 coefficients) | * Computes the factorization of an input
e Bank of filters applied to input data matrix, A=Q|_2 _
* FIR filters implemented in time and ’ ITpIe_rtrrllentatlon uses Fast Givens
frequency domain algorithm
SVD CFAR
Input Bidiagonal Diagonal Dopplers K Target List
Matrix Matrix Matrix = Gk _
C (i.j.k)
|:> |:> Range ﬁ
E Normalize,
. ] Beams Threshold
* Produces decomposition of an input o
matrix, X=UZVH * Creates a target list given a data cube
e Classic Golub-Kahan SVD * Calculates normalized power for each
implementation cell, thresholds for target detection
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@ HPEC Challenge: Information and

Knowledge Processing Kernels

PCA

Genetic Algorithm

Crossover Mutation
| | | .| | .|
| o1 O
[ [ | |
Eme] Emms] Emms

Evaluation

* Evaluate each chromosome
* Select chromosomes for next generation

* Crossover: randomly pair up chromosomes
and exchange portions

* Mutation: randomly change each chromosome

Pattern Match

Compute best match for a pattern out of

set of candidate patterns

— Uses weighted mean-square error

Pattern under test

M

Mag

Range

’

\

Database Operations

« Three generic database
operations:

— search: find all items in

Red-Black Tree a given range

Data Structure . .
— insert: add items to the

C PP database
[ o I o B — delete: remove item
Linked List from the database

Data Structures

Corner Turn

011]2|3
415|6 |7
819 |10|11

(07

8

9

10

WIN|=|O

Njojo| b~

11

* Memory rearrangement of matrix

contents

—  Switch from row to column major

layout
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HPEC Challenge
[8] sscaA#3: SAR System Architecture

Front-End Sensor Processing

- TTT TS TS T T TSI T T T T T T T ST T s s T E T 1
1 1
1 1
Scalable Data ' Kernel #1 Kernel #2 |
i | DataRead | SAR Template | SAR :
and Template - 41 Image /|| , Image Image !
Generator | | andimage nsertion Storage |
: Formation :
3 _J_ Temelates . :
G f Raw
T rou;:sto SAR Template
empfate File Files
Files \
|
: <] Fielo
Computation
P Raw SAR Groups of Sub-lmage ﬁ;ge
Data Files Template Detection
u Files Files
_/
. — |
Template Sub-Image Template
Files Eﬁg‘“m" Files
r |- ="-=-=-="=-="-"\ - """ "=-"=-"=-"--"r-/-=-""=-"=-==== I
! 1
1 1
1 1
: Kernel #3 I .
Detections
HPEC community E Image ge:netl_#ﬁ : » Validation ... but File 10
has traditionally ! Retrieval  |femplates etectio ! performance is
focused on ! —> ! increasingly
Computation ... e iaiainin el el it important
Back-End Knowledge Formation
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@ Summary and Future Work

Summary

* Major finding: DARPA is targeting ASIC-levels of computational
efficiency applied to programmable computational architectures

 PAKCK results show this is a challenging goal to achieve

« PAKCK has quantified the gap between current programmable
computational architectures and DARPA goal for DoD-relevant
application kernels

Future Work

« Characterize performance bottlenecks on Sandy Bridge for
SpMV and SpGEMM

 Extend LLMORE to simulating other device technologies
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