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ABSTRACT 
Regular distributions for storing dense matrices on parallel 
systems are not always used in practice. In many scientific 
applicati RUMMA) [1] to handle irregularly distributed matrices. 
Our approach relies on a distribution independent algorithm that 
provides dynamic load balancing by exploiting data locality and 
achieves performance as good as the traditional approach which 
relies on temporary arrays with regular distribution, data 
redistribution, and matrix multiplication for regular matrices to 
handle the irregular case. The proposed algorithm is memory-
efficient because temporary matrices are not needed. This feature 
is critical for systems like the IBM Blue Gene/L that offer very 
limited amount of memory per node. The experimental results 
demonstrate very good performance across the range of matrix 
distributions and problem sizes motivated by real applications. 

Categories and Subject Descriptors 
D.1.3 [Programming Techniques]: Concurrent Programming – 
Parallel programming. 

General Terms 
Algorithms, Performance, Design (c) 2005 Association for 
Computing Machinery. 

Keywords 
Parallel Matrix Multiplication, Parallel Linear Algebra, Irregular 
Distribution, SRUMMA, Remote Memory Access, Global Arrays, 
Parallel programming. 

1. INTRODUCTION 
Matrix multiplication is used in many areas of science and 
technology. In fact, for many scientific applications, it represents 
one of the most important linear algebra operations. Computer 
vendors have optimized the standard serial dense matrix 
multiplication interface in the open source Basic Linear Algebra 
Subroutines (BLAS) to deliver performance as close to the peak 
processor performance as possible. Because optimized matrix 
multiplication can be so efficient, computational scientists, when 

feasible, attempt to reformulate the mathematical description of 
their application in terms of matrix multiplications.  

In earlier studies [2-22], researchers targeted their parallel 
implementations for massively parallel processor (MPP) 
architectures with uniprocessor computational nodes (e.g., Intel 
Touchstone Delta, Intel IPSC/860, nCUBE/2) on which message 
passing was the highest-performance and typically the only 
communication protocol available. In particular, these algorithms 
relied on optimized broadcasts or send-receive operations. 
Contemporary architectures differ in several key aspects from the 
earlier MPP systems. Regardless of the processor architecture, to 
improve the cost-effectiveness of the overall system, both the 
high-end commercial designs and the commodity systems employ 
as a building block Symmetric Multi-Processor (SMP) nodes 
connected with a high-performance network. All of these 
architectures have the hardware support for load/store 
communication within the underlying SMP nodes, and some 
extend the scope of that protocol to the entire machine (Cray X1, 
SGI Altix). Although the high-performance implementations of 
message passing can exploit shared memory internally, the 
performance is less competitive than direct loads and stores. 
Multiple studies have attempted to exploit the OpenMP shared 
memory programming model in the parallel matrix multiplication, 
either as a standalone approach on scalable shared memory 
systems [23,24] or as a hybrid OpenMP-MPI approach [25,26] on 
SMP clusters. Overall, the reported performance results when 
compared to the pure MPI implementations were not encouraging.   

The underlying conceptual model of the architecture for which the 
SRUMMA (Shared and Remote-memory based Universal Matrix 
Multiplication Algorithm) algorithm was designed is a cluster of 
multiprocessor nodes connected with a network that supports 
remote memory access communication (put/get model) between 
the nodes [1]. Remote memory access (RMA) is often the fastest 
communication protocol available, especially when implemented 
in hardware as zero-copy RDMA write/read operations (e.g., 
Infiniband, Quadrics, and Myrinet). RMA is often used to 
implement point-to-point MPI send/receive calls [27,28]. To 
address the growing gap between processor and network speed, 
SRUMMA relies on nonblocking RMA operation as the primary 
latency hiding mechanism (through overlapping communication 
with computations) [29]. In addition, each cluster node is assumed 
to provide efficient load/store operations that allow direct access 
to the data. In other words, a node of the cluster represents a 
shared memory communication domain. SRUMMA is explicitly 
aware of the task mapping to shared memory domains; that is, it is 
written to use shared memory to access parts of the matrix held on 
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processors within the domain of which the given processor is a 
part, and nonblocking RMA operations to access parts of the 
matrix outside of the local shared memory domain (i.e., RMA 
domain). Unlike the OpenMP studies [23, 24] that relied on a 
compiler-based and high-level shared memory model, we simply 
place the distributed matrices in shared memory and exercise full 
control over the data movement either through the use of explicit 
loads and stores or optimized block memory copies. A comparison 
to the standard matrix multiplication interface, pdgemm in 
PBLAS [20] and SUMMA [19], revealed that for square matrices 
with regular distributions, SRUMMA achieves consistent and 
very competitive performance on the four architectures used in the 
study [1]: 16-way (IBM SP) and 2-way (Linux/Xeon) nodes, SGI 
Altix, and the Cray X1 with its partitioned shared memory 
hardware. SUMMA [19] is also used in practice in the pdgemm 
routine in PBLAS [20], which is a building block of ScaLAPACK 
[21]. 

However, regular distributions of matrices on parallel systems are 
not always used in practice, and therefore, the parallel matrix 
multiplication algorithms designed for regular problems cannot be 
used directly. In many scientific applications, matrix distribution 
is based on the underlying physical problem which might involve 
variable block sizes on individual processors [41].  For example, 
in computational chemistry matrix distribution is chosen based on 
the basis set of the atoms in molecular systems to exploit data 
locality and maximize performance of the Fock construction 
algorithm [39] which is a key element of the self-consistent field 
(SCF) calculations. The irregular distribution of the matrix can 
significantly impact the performance of matrix multiplication 
operation and prevent users from using the available matrix 
multiplication algorithms directly. The standard approach for 
multiplying irregularly distributed matrices has been based on 
multiplying regularly distributed temporary arrays and requires 
data redistribution. In addition to the extra communication 
involved in the redistribution process, the main issue with this 
approach has been the extra memory consumption required for the 
temporary arrays. This issue is especially important for emerging 
massively parallel systems like the IBM Blue Gene/L, which are 
based on dense packaging and offer very limited memory 
expansion options. Addressing this limitation without 
compromising the performance is the primary goal of our work. 

In this paper we generalize the SRUMMA algorithm to handle 
irregularly distributed matrices efficiently without relying on array 
temporaries and data redistribution. The main contribution of   this 
work is the memory-efficient distribution-independent algorithm 
that delivers performance as good as that provided by the standard 
redistribution-based approach, and therefore is very well suited for 
large matrices and systems with memory constraints that cannot 
handle temporary arrays [42]. We also describe and compare the 
two approaches for irregularly distributed matrices: 1) 
redistribution of irregularly distributed matrices to the regular 
form followed by the regular matrix multiplication, 2) proposed 
distribution independent matrix multiplication based on logical 
blocking of the result matrix. The SRUMMA algorithm with 
proposed extensions is general, memory-efficient, and able to 
deliver excellent performance and scalability on modern systems.  

The paper is organized as follows. Section 2 describes the 
SRUMMA algorithm, its efficiency model, and implementation. 
In Section 3, the distribution independent matrix multiplication 
algorithm is presented. Section 4 describes and analyzes 
performance results of SRUMMA matrix multiplication for 
various matrix distributions from two application areas as well as 

results for the communication operations used in the 
implementation.  The paper is concluded in Section 5. 

2. OVERVIEW OF THE BASELINE 
SRUMMA ALGORITHM 
At the high level, SRUMMA follows the serial block-based 
matrix multiplication (see Figure 1) by assuming the regular block 
distribution of matrices A, B, and C and adopting the “owner 
computes” rule with respect to blocks of the matrix C. Each 
process accesses the appropriate blocks of matrices A and B to 
multiply them together with the result stored in the locally owned 
part of matrix C. The specific protocol used to access nonlocal 
blocks varies depending on whether they are located in the same 
or another shared memory domain as the current processor.  

In principle, the overall sequence of block matrix multiplications 
can be similar to that in Cannon’s algorithm. However, unlike 
Cannon’s algorithm, where skewed blocks of matrix A and B are 
shifted using message-passing to the logically neighboring 
processors, our approach fetches these blocks independently, as 
needed, without requiring any coordination with the processors 
that own the matrix blocks. This is possible thanks to the use of 
RMA or shared memory access protocols. In addition, the specific 
sequence in which the block matrix multiplications are executed is 
determined dynamically at run time to more efficiently schedule 
and overlap communication with computations. The absence of 
sender-receiver synchronization/coordination (such as in 
Cannon’s algorithm) based on message passing makes the overall 
algorithm more asynchronous and thus more suited for the 
execution environments in which the computational threads share 
a CPU with other processes and system daemons (e.g., on 
commodity clusters). This is because synchronization amplifies 
performance degradations resulting from the nonexclusive use of 
the processor by the application.  

2.1 Efficiency Model 
Consider a matrix multiplication operation C = AB in which the 
order of matrices A, B, and C is m x k, k x n, and m x n, 
respectively. Let us 1) denote that tw is the data transfer time per 
element, ts is the latency (or startup cost), P is the number of 
processors, p x q is a process grid in two-dimensional fashion i.e., 
P = p x q, and 2) assume (similarly to other papers [7, 30]) that the 
cost of the addition and multiplication floating point operation 
takes unit time (line 5 in Figure 1). For our analysis, we assume a 
two-dimensional matrix distributed as shown in Figure 2.  
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1:   for i=0 to s-1 { 
2:      for j=0 to s-1 { 
3:         Initialize all elements of Cij to 
                   zero (optional) 
4:         for k=0 to s-1 { 
5:    Cij = Cij + Aik×Bkj 
6:         } 
7:      } 
8:   } 

Figure 1. Block matrix multiplication for matrices N×N and 
block size N/s × N/s 



 

parallel time Tpar_rma is the sum of computation time (Tcomp) and 
the communication time to get the row and column blocks of 
matrices A and B (Tcomm = Trow_comm + Tcolumn_comm). Each process 
gets q blocks of matrix A and p blocks of matrix B of 
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For simplicity, we assume m=n=k=N and p=q= P , then 
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For a network with sufficient bandwidth, ts can be neglected as it 
is relatively small when compared to the total communication 
time. Therefore, the parallel efficiency (η) is, η = Speedup/P = 
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The isoefficiency function of this algorithm is O (P3/2), which is 
same as Cannon’s algorithm [7,19]. 

Overlapping communication with computation: When non-
blocking RMA is used to transfer matrix blocks, the 
communication can be overlapped with computation, as shown in 
Figure 3. 
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2.2 Implementation Considerations 
To derive an efficient implementation of the matrix multiplication 
algorithm, we rely on the following assumptions: 1) the ability to 
overlap computation with the network communication on clusters 
is essential for latency hiding; 2) hardware-supported shared 
memory is the fastest protocol available on the shared memory 
architectures and SMP nodes of the current clusters ; 3) to avoid 
dependencies on the OpenMP interfaces and compiler technology, 
we need as much control over shared memory communication as 
possible; and 4) use of RMA is preferable to the send-receive 
model, as it makes the implementation simpler and potentially 
more efficient because of the reduced synchronization cost.  We 
will first describe the implementation of the algorithm for clusters; 
then we will discuss special considerations for the scalable shared 
memory systems. 

 

 
For each processor p and corresponding matrix block Cij held on 
that processor, 

1. Build a list of tasks corresponding to the block matrix 
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each of the AikBkj products.  

2. Reorder the task list according to the communication domains 
for processors at which the Aik, Bkj are stored. The tasks that 
involve matrix blocks stored in the shared memory domain of 
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P00 P03 P02 P01 
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P30 P33 P32 P31 

Figure 2. Matrix distribution example: In a 4 x 4 process grid,
process P00 needs blocks of matrix A from P00, P01, P02, and
P03, and blocks of matrix B from P00, P10, P20, and P30. 

Figure 4. Pattern of getting blocks on a 4-way SMP cluster to 
reduce communication contention. 
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Figure 3. Using two sets of buffers to overlap communication 
and computation in matrix multiplication 



 

the current processor are moved to the beginning of the list. 
This action is taken to ensure overlap of computations and 
nonblocking communication required to bring matrix blocks 
from other cluster nodes to compute the other tasks on the list. 
Because the tasks at the beginning of the list use data 
accessible directly, we do not have to wait to start the pipeline. 
Another consideration in sorting the task list is to optimize the 
locality reference so that the currently held Aik matrix block is 
used in consecutive matrix products before its copy is 
discarded and the corresponding buffer reused. 

3. For each task on the list,  

• Issue a nonblocking get operation for the matrix block 
involved in the next task on the list if it is not on the same 
node.  

• Wait for the nonblocking get operation bringing Aik and/or 
Bkj to execute the current task.  

• Call serial matrix multiplication that computes AikBkj  and 
adds the result to the Cij block.  

4. There are two temporary buffers (B1 and B2) used internally. 
One buffer is used for communication and the other buffer is 
used for computation as shown in Figure 3. At a given step, a 
processor receives data in B2 while computing the data in B1. 
In the next step, data received in B2 are used for computation 
and B1 is used for receiving data. Overlapping communication 
with computation is achieved in all but the first step. 

As a further refinement of the algorithm, as shown in Figure 4, the 
“diagonal shift” algorithm is used in Step 2 to sort the task list so 
that the communication pattern reduces the communication 
contention on clusters.  For example, consider a matrix A that is 
distributed on a 4x4 processor grid (as shown in Figure 4a on a 4-
way SMP cluster, that is, node 1 has processors P00, P10, P20, and 
P30; node 2 has processors P01, P11, P21, and P31; etc., as shown in 
Figure 4b. To compute its locally owned matrix C, a processor 
needs the corresponding rows and columns of matrix A and B 
respectively, as shown in Figures 2 and 3 (i.e., processor P00 needs 
blocks of matrix A from P00, P01, P02, and P03, and blocks of 
matrix B from P00, P10, P20, and P30). If the diagonal shift 
algorithm is not used, processors P00, P10, P20, and P30 get a block 
from P01, P11, P21, and P31, respectively in the first step. Thus all 

four processors are sharing the network bandwidth between node1 
and node2. If the diagonal shift algorithm is used instead, then 
processors P00, P10, P20, and P30 get a block from P00 (node1), P11 
(node2), P22 (node3), and P33 (node4), respectively in the first step, 
thus reducing the contention. This algorithm performs better if 
there are more processors per node [1]. Figure 4c represents the 
pattern of getting blocks by processors in node 1. 

The cluster algorithm running on a system with one shared 
memory communication domain reduces to a shared memory 
version. However, this algorithm has two versions, and the one 
used depends on whether remote shared memory is locally 
cacheable. For example, the Cray X1 the shared memory cannot 
be cached because of the memory coherency protocol [31]. 
Because the performance of the serial matrix multiplication 
depends critically on the effective cache utilization, on the Cray 
X1 we copy nonlocal blocks of matrices A and B to a local buffer 
before calling the serial matrix multiplication. On the other hand, 
the SGI Altix is a shared memory system in which shared memory 
data can be cached. The matrix multiplication does not require 
explicit memory copies: the appropriate blocks of matrix A and B 
are passed directly to the serial matrix multiplication subroutine.  

The current implementation of SRUMMA relies on the portable 
ARMCI library [32,34,35] and, in particular, the memory 
allocation interface ARMCI_Malloc, nonblocking get operations, 
and the cluster configuration query interfaces [33]. The cluster 
configuration information provided by ARMCI enables the 
application at run time to determine which processors can 
communicate through shared memory. ARMCI_Malloc is a 
collective memory allocator that allocates shared memory on 
clusters or shared memory architectures. Using the pointer values 
and cluster locality information, processors in the same shared 
memory domain can access the allocated memory directly through 
load/store operations or through the ARMCI communication calls. 
For example, ARMCI get/put operations are implemented as a 
memory copy within the SMP node of a cluster. Thanks to the 
ARMCI compatibility with MPI, the current implementation of 
the matrix multiplication routine could be used in normal MPI-
based programs, provided that the distributed arrays are allocated 
using ARMCI_Malloc rather than, for example, the standard 
malloc call. This is not a significant restriction because in most 
applications, distributed arrays are created collectively anyway. 
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Figure 5: (a) Matrix distributed on a 3x3 process grid with uneven block sizes. (b) Matrix is logically partitioned so that it is load 
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3. DISTRIBUTION INDEPENDENT 
ALGORITHM 
In previous work, we extended SRUMMA to handle transpose 
and rectangular matrices [36]. In this paper, we propose a 
distribution-independent [42] algorithm to handle irregularly 
distributed matrices. The algorithm described in Section 2 is 
extended to accomplish this. To improve performance for 
irregular distributions, the current approach relies on two 
techniques 1) logical block partitioning and 2) exploiting data 
locality. 

Regular distribution for distributing a matrix on parallel systems is 
not always used in practice. In many scientific applications, the 
matrix distribution is based on the underlying physical problem 
which might involve variable block sizes on individual processors 
[41]. This irregular distribution of matrices leads to load 
imbalance, a major performance degradation factor in many 
applications. The standard approach for multiplying irregularly 
distributed matrices has been based on multiplying regularly 
distributed temporary arrays and requires data redistribution. We 
will refer to this standard approach as copy-based approach. Our 

proposed algorithm addresses, not only the load imbalance, but 
also the following two major issues,  

• extra communication involved in the redistribution process. In 
the best case (matrices are regular), the redistribution cost is 
zero, and in the worst case (a matrix resides in only one 
processor), the redistribution cost is maximum. Therefore, the 
redistribution cost is proportional to the degree of irregularity 
(i.e. distribution of a matrix among processors). 

• extra memory consumption required for the temporary arrays. 
This issue is especially important for emerging massively 

parallel systems like the IBM Blue Gene/L, which are based on 
dense packaging and offer very limited memory expansion 
options. In the proposed algorithm, apart from the memory 
required to store the matrices, two temporary buffers of fixed 
size are used by each process in the communication step. This 
temporary buffer size is independent of the block size or matrix 
size. If the block size is too big to fit into the temporary buffer, 
then the blocks are sub-divided to fit into the temporary buffer. 
There are two temporary buffers used in the proposed 
algorithm because of the overlapping of communication and 
computation. Thus, the proposed algorithm for irregular matrix 
multiplication has similar memory requirements as regular 
SRUMMA [1]. For the sake of simplicity, and ease of 
explanation, we assume that the block size is the same as the 
buffer size, and we will refer these temporary buffers as blocks 
or logical blocks. In the copy-based algorithm, three temporary 
regular matrices (i.e. A, B and C) are created (i.e. O (N^2/P) 
extra memory than the proposed algorithm, where N is the 
matrix size and P is number of processors). The irregular 
matrices are redistributed [40,43]  to these regular matrices, 

and performed regular SRUMMA matrix multiplication.  

Consider a matrix multiplication operation C = AB, in which A, 
B, and C are distributed with variable block sizes across 
processors. Assuming the distribution of C matrix as shown in 
Figure 5a,  each matrix is logically partitioned (Figure 5b) such 
that all the processors have almost the same logical block size, 
independent of the underlying distribution. As shown in Figure 5c, 
process P00 gets the logical blocks a1, a2, a3 and b1, b2, b3 to 
compute c1. Similarly other processes attempt to compute their 
logically owned blocks. Each process is aware of the locality of all 
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Figure 6:  Process P00 gets the logical chunk a2 from processes P01, P02, P11, and P12 



 

the distributed matrices. Once the physical location of the logical 
block in the distributed/partitioned address space is determined, 
indices corresponding to where the logical block is located need to 
be determined. When this information is available, multiple non-
blocking get calls are made, one for each remote destination that 
holds a part of the data. After all the calls are issued, they are 
waited upon until completed. By issuing all the calls first and then 
waiting on their completion, a significant amount of overlap can 
be achieved. For example, process P00 gets the logical block a2 
from processes P01, P02, P11, and P12 by issuing four non-blocking 
calls to each of these processes while doing useful computation 
with the previously received blocks a1 and b1, and waiting for all 
the calls to complete as shown in Figures 5c and 6.  

The algorithm attempts to hide most of the communication time 
by overlapping communication with computation. This applies to 
get operations that transfer blocks of A and B matrices as well as 
put operations that write the corresponding blocks of the result 
matrix C. The assignment of the logical blocks of matrices to 
individual processors is determined at run-time to achieve load 
balancing. To reduce communication contention on clusters we 
have to modify the diagonal shift algorithm (Section 2.2) to access 
logical matrix blocks that can be spread across multiple processors 
(Figure 6). The algorithm is applied to logical matrix block rather 
than physical processors. 

4. EXPERIMENTAL RESULTS 
The effectiveness of the SRUMMA for regularly distributed 
square matrices on multiple platforms has been discussed in [1]. 
In this section, we present and analyze the performance of the 
matrix multiplication operation for irregular problems. The 
numerical experiments were conducted on the following platforms 
at Pacific Northwest National Laboratory: 1) Linux cluster based 
on dual 1.5-GHz Intel Itanium-2 nodes and Quadrics QsNetII 
network (Elan4), 2) SGI Altix 3000, shared-memory NUMA 
system with 128 1.5-GHz Intel Itanium-2 CPUs. We used 
irregularly distributed matrices from computational chemistry and 
astrophysics applications. In addition to performance advantages 
of SRUMMA over pdgemm (ScalaPACK/PBLAS) for regularly 
distributed matrices as reported in [1], we also present results on 
the Linux/Quadrics cluster. Furthermore, we report performance 
of communication operations used by SRUMMA on that cluster.  

4.1 Performance for regular distribution 
In our previous work, was demonstrated that SRUMMA delivers 
superior performance over ScaLAPACK pdgemm on the IBM SP, 
SGI Altix, Cray X1 and Linux Xeon cluster with Myrinet. The 
work described in this paper uses the SGI Altix and a Linux 
cluster with a more recent processor (Itanium-2) and the latest 
Elan-4 Quadrics network. Figure 7 shows the performance of 
SRUMMA and ScaLAPACK/PBLAS pdgemm for regularly 
distributed matrix multiplication. For the comparison, we used the 
pdgemm routine from PBLAS/ScaLAPACK Version 1.7. 
SUMMA [19] is used in practice in ScaLAPACK/PBLAS [20]. 
The same dgemm (double precision serial matrix multiplication) 
routines from a vendor optimized math library (mlib from Hewlett 
Packard for IA64) were used in all three parallel algorithms. 
Optimum block sizes were chosen empirically for all matrix sizes 
and processor counts. Figure 7 shows that for this cluster 
configuration, similarly to other platforms [1], SRUMMA delivers 
competitive performance to PBLAS pdgemm.  

We investigated the performance of MPI send/receive operations 
and the ARMCI get operation on the Linux cluster. SGI Altix is 
not included in this study as we directly access shared memory in 

our matrix multiplication [1]. However, to understand the 
performance of the matrix multiplication algorithm on the Linux 
cluster with Quadrics Elan-4 network we performed several tests 
to measure the role of the underlying communication protocols 
with respect to the overall performance model. Our algorithm uses 
nonblocking RMA communication, which in principle offers an 
excellent potential for overlapping communication with 
computations. An increasing amount of computation is gradually 
inserted between the initiating nonblocking get call and the wait 
completion call. At some point, the sum of the nonblocking call 
issue overhead and computation would exceed the idle CPU time, 
and hence the total benchmark running time would increase. This 
gives us the maximum possible overlap. Experimental results 
(Figure 8) indeed confirm that the non-blocking get offers almost 
99% overlap for medium- and larger-sized messages on Quadrics 
which makes this operation very well suited for overlapping 
communication with computations. This validates the 
performance model described by Equation 3. 

 

 

Figure 8. Degree of overlap as a function of message size in 
ARMCI on the Linux64 cluster. 
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Figure 7. Performance of regular distributed matrix 
multiplication operation on the Linux64 cluster.   



 

4.2 Experimental results for irregular 
distribution 
In many scientific applications, a matrix distribution is irregular 
because of the underlying physical problem, which involves 
variable block sizes on individual processors. To demonstrate the 
effectiveness of our proposed algorithm, we used irregularly 
distributed matrices in scientific applications, in particular 
computational chemistry applications and the N-body problem. In 
these applications, parallel matrix multiplication is one of the most 
important linear algebra operations and the distribution of the 
matrix among processors can significantly impact the performance 
of matrix multiplication algorithm. 

We used these irregular matrices (Figure 9) and performed 
parallel matrix multiplication using the proposed distribution-
independent algorithm (Section 3) and a copy-based algorithm. In 
the copy-based algorithm, we created three temporary regular 
matrices (i.e. A, B and C) and then redistributed (i.e. copy) the 
data [40,43] and performed regular SRUMMA matrix 
multiplication. There is a redistribution cost involved in the copy-
based algorithm as the original matrices, which are irregularly 
distributed among processors, are redistributed to temporary 
regular matrices, which then are uniformly distributed among 
processors.  

4.2.1 Computational Chemistry Example 
Fock matrices [37,38,39] are used in the distributed data SCF 
algorithm in massively parallel computational chemistry 
applications like NWChem [45]. They result in superior scaling 
for smaller molecules and very large systems. The Fock matrix is 
distributed by “atom blocks”, that is, elements of the Fock F 
belonging to a given atom are all stored on the same processor to 
simplify the communication costs for the underlying physical 
problem [39]. Therefore, the Fock matrix should be stored in a 
square processor grid fashion because of the distribution nature of 
the Fock matrix. For example, a Fock matrix of size mxm can be 
only be distributed on a processor grid pxq (where p = q). 
However, this distribution nature of Fock matrix leads to load 
imbalance, and there is also potential load imbalance when p ≠ q. 
A simple Fock matrix for H2O is shown in Figure 9a. For 
example, the processors that own Oxygen atom blocks have larger 
block size when compared to processors owning Hydrogen atom 
blocks (see Figure 9a). For our experimental purposes we used 
Fock matrices of various sizes: 1798x1798, 3880x3880 and 
7096x7096 [38,39]. These are the matrices for human GTPase-
activating protein (Figure 9b) [39]. 

Experiments were conducted on the Quadrics Linux cluster and 
the SGI Altix. Our experimental results (Figure 10) indicate that, 
the proposed algorithm, which is memory efficient because 
temporary matrices are not needed, is competitive with the copy-
based algorithm. This is because of the redistribution cost (also 
shown in the Figure 10) in the copy-based algorithm, as the 
redistribution overhead (or communication overhead) is directly 
proportional to the number of processors and matrix size. The 
proposed algorithm uses O (B2) memory (for temporary matrices) 
and copy-based uses O (N2/P) + O (B2) memory, where B is the 
block size. This is excluding memory required to store A, B and C 
matrices in proposed as well as copy-based algorithms. For 
example, let us consider N=3880 and P=16 processors, in the 
proposed algorithm, each process consumes only 3 MB extra 
memory (2*3*256*256*8, i.e. 2 temporary buffers, 3 matrices, 8 
bytes for storing a double and block size as 256) and copy-based 
algorithm consumes approximately 25 MB extra memory 
(3*(3880*3880/16)*8 + 2*3*(256*256)*8).  

Linux cluster results indicate that for small matrices, the copy-
based algorithm seems to perform better because of the relatively 
low redistribution cost. For large matrices and large processor 
counts, the proposed algorithm outperformed the copy-based 
algorithm by at least 10% in most of the cases. This is due to the 
following reasons: (i) the proposed algorithm was able to overlap 
90% of the communication with computation, (ii) higher 
redistribution cost in copy-based algorithm for larger problem 
sizes and processor counts. For example, on 240 processors, the 
proposed algorithm performed 20% and 16% better than the copy-
based algorithm for matrix sizes 3880 and 7096 respectively. The 
percentage improvement is lower for matrix size 7096 when 
compared to 3880, because computation cost predominates 
communication cost for larger matrices. However, on a perfectly 
square processor grid (e.g., 16x16 grid; 256 processors), the copy-
based algorithm performs well because the Fock matrix of human 
GTPase-activating protein is almost uniformly distributed among 
processors and the redistribution cost is low. 

On the other hand, the SGI Altix is a shared memory NUMA 
system, in which shared memory data can be cached. Therefore, 
neither of the parallel matrix multiplication algorithms requires 
explicit communication. As the memory copy cost is relatively 
less when compared to the explicit communication (as in the 
Linux cluster), the proposed algorithm takes about the same time 
as the copy-based algorithm and shows only 5% improvement in 
some cases. However, on perfectly square processor counts (say, 
64), the copy-based algorithm performs well because the matrix is 

H 

H H 

H 

O 

O 

(a) (c) (d) (b) 
Figure 9. (a) Fock (Density) matrix for H2Odistributed on a 3x3 process grid [39]. Basis functions of each atom (assuming each 
Hydrogen Oxygen atom has 4 and 10 basis functions) should reside on the same processor because of the nature of the underlying 
physics problem. (b) GTPase-activating Protein (c,d) Gaussian distribution of the N-body particles in the computational domain and 
spatial decomposition for a 5x5 process grid 



 

almost uniformly distributed among processors and the 
redistribution cost is low (local memory access is faster than 
remote memory copy in a NUMA system).  

Although the proposed algorithm takes about the same time as the 
copy-based SRUMMA (only 10% improvement in most cases), 
the proposed algorithm is memory-efficient and the algorithm of 
choice for applications where it is not practical to redistribute 
matrices. Moreover, for a fixed problem size, when the processor 
count increases, the impact of the redistribution cost increases thus 
affecting scalability. However, the proposed algorithm scales well 
as long as there is enough computation to overlap communication. 
For example, a 10% communication overlap can result in a 10% 

improvement in communication cost. 

4.2.2 N-body Problems: 
The N-body problem [44] is the problem of finding the motions of 
N bodies (particles), given the initial positions, masses, and 
velocities, using classical mechanics (i.e., Newton's law of gravity 
and Newton's laws of motion). The particles are distributed in a 
non-uniform way in the computational space. For our 
experimental purposes, we considered the standard Gaussian (or 
normal) distribution of particles with three different classes as 
shown in Figure 14. Class A is the most irregular case considered 
with more particles located toward the center of the computational 
domain. The spatial decomposition of the particles in a processor 

Figure 10. Performance of three versions of matrix multiplication for various matrix sizes/basis functions (1798, 3880 and 7096) 
corresponding to Fock matrix of Human GTPase-activating protein on the Linux cluster and SGI Altix. 
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grid results in an irregular distribution of particles among 
processors as shown in Figure 9c and 9d; therefore, the underlying 
matrices in this application are irregular. For example, the 
processors, which own a block from the center of the 
computational domain, have a much larger block size when 
compared to processors that own corner blocks (Figure 9d). 

Experiments were conducted on the two platforms for all three 
classes of Gaussian distribution (Figure 14). We present results for 
square matrices of size 2048, 4096, and 8192. Although the 
performance results for the proposed algorithm are uniformly 
good for all the cases we studied, because of space limitations, we 

only include results for 1) all three problem sizes for class B, and 
2) a medium problem size (4096) for classes A and C. Figures 11 
and 12 illustrate that the proposed algorithm is competitive as 
well. The N-body results are similar to the Fock matrix example 
because the problems sizes and computational structure are almost 
same in both examples. For all the three classes of Gaussian 
distribution, the proposed algorithm consistently performed well 
on both platforms. The Copy-based algorithm performs somewhat 
better for perfectly square processor grid (e.g, 225, 256 
processors), because of the relatively low redistribution cost. 
Linux cluster results illustrate that for larger processor counts and 
smaller problem sizes (e.g 2048), the proposed algorithm 

Figure 11. Performance of three versions of matrix multiplication for irregularly distributed matrices (Gaussian distribution for N-
body problems) on the Linux cluster. 
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performed better than the copy-based because of the following 
reasons: (i) the proposed algorithm was able to overlap 
communication with computation, for example, a 10% 
communication overlap can result in a 10% improvement in 
communication cost; (ii) higher redistribution cost in copy-based 
algorithm when compared to the computation cost. 

4.2.3 Degree of Irregularity 
The quantification on how the degree of irregularity impacts the 
performance of both algorithms for matrix size 4096 on Linux 
cluster (proposed and copy-based) is shown in Figure 13.  Due to 
space limitations, we are only showing Linux cluster performance 
numbers. The SGI Altix results are similar to those in Figure 13. 

Class A is the most irregular case as shown in Figure 14 and 
matrices of class C are well-balanced compared to class A 
matrices. In Figure 14, degree of irregularity (peak of distribution 
function) is 2, 4 and 8 for class C, B, and A respectively (i.e. class 
A is 2 and 4 times irregular when compared to class B and C 
respectively). In spite of a huge variation in degree of irregularity, 
it is interesting to see that the performance of the proposed 
algorithm varies only 10-20% (see, Figure 13) for various classes 
of matrix distribution. The proposed algorithm scales well for 
various processor counts and classes of matrix distributions.  For 
class C style matrices (low degree of irregularity), the copy-based 
algorithm performs slightly better than the proposed algorithm as 
the redistribution cost is less.  For class A style matrices, the 

Figure 12. Performance of three versions of the matrix multiplication for irregularly distributed matrices (Gaussian distribution 
for N-body problems) on the SGI Altix. 
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redistribution cost is high and therefore, the proposed algorithm is 
competitive to the copy-based algorithm. For larger number of 
processors (say, 256 in our case), the performance of copy-based 
algorithm degrades because the redistribution cost predominates 
the computation cost. 

 

 

4.2.4 Avoidance of communication contention 
To demonstrate the effectiveness of diagonal-shift algorithm 
(Figure 4) for reducing communication contention we enabled and 
disabled the diagonal-shift algorithm in the proposed algorithm 
for an N-body class B problem (2048 particles). Figure 15 
illustrates that the diagonal-shift algorithm in the proposed 
algorithm improves performance by effectively reducing network 
contention on clusters. 

5. SUMMARY AND CONCLUSIONS 
This paper describes a new dense matrix multiplication algorithm 
that can efficiently deal with irregularly distributed matrices while 
minimizing memory consumption. Generalized SRUMMA 
exploits shared memory and nonblocking RMA protocols on 
clusters and shared memory systems. The distribution independent 
algorithm delivers performance as good as the algorithm for 
regularly distributed matrices combined with the necessary data 
redistributions. However, because it avoids redistributions and the 
creation of temporary matrices, it is preferable in practice 
especially for problems with large matrices or when system 
memory constrains, on architectures such as the IBM Blue 
Gene/L, make creating temporary arrays and redistribution 
impractical. 
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