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Abstract—As semantic datasets grow to be very large and
divergent, there is a need to identify and exploit their inherent
semantic structure for discovery and optimization. Towards
that end, we present here a novel methodology to identify the
semantic structures inherent in an arbitrary semantic graph
dataset. We first present the concept of an extant ontology as a
statistical description of the semantic relations present amongst
the typed entities modeled in the graph. This serves as a model
of the underlying semantic structure to aid in discovery and
visualization. We then describe a method of ontological scaling
in which the ontology is employed as a hierarchical scaling filter
to infer different resolution levels at which the graph structures
are to be viewed or analyzed. We illustrate these methods on
three large and publicly available semantic datasets containing
more than one billion edges each.

Keywords-Semantic Web; Visualization; Ontology; Multi-
resolution Data Mining;

I. INTRODUCTION

A semantic graph is a graphical model for representing

knowledge in patterns of interconnected nodes and edges.

This model was first developed for artificial intelligence and

machine translation [1], [2]. The semantic web represents an

extension to those approaches to model human knowledge

at the larger scale of the internet [3]. This has lead to

a significant increase in the amount of data generated in

semantic graph formats thus graphs containing billions of

edges are increasingly common.

Semantic graph datasets are interlinked through the use

of agreed upon or mappable node identifiers [4]. Thus one

can curate datasets separately, or easily combine them into

one larger graph. Furthermore, ontological (typing) meta-

data is commonly included along with the underlying data

(instance) graph, or partially so, or not at all. Analysis,

mining, and visualizing methods have (not surprisingly) not

been able to keep up with the size and richness of these large

models; graph visualization is already notoriously difficult,

scaling that to a billion edges even more so.

Consider being handed a ten billion edge semantic graph.

How would we go about summarizing, visualizing, and

mining the useful patterns in that model? How can we

identify the semantically significant structures in the graph?

What kinds of resources and architectures are needed to

carry out these tasks? The two related methods we present

in this work are an attempt to help answer these questions.

As noted above, ontological information, such as class and

relation properties, may or may not be provided in a triple

store. If so, it may or may not refer to externally defined

ontologies, and then may or may not be consistent with those

external ontologies. So to identify what actual semantic

typing is available in a triple store, we have developed

methods to derive an extant ontology based on the statistical

prevalence of relations between typed entities in the graph.

When the extant ontology is used for visualization, a user

is able to tell what is the percentage of relations between

certain node types.

While the extant ontology is intended first for visualiza-

tion, it is also a candidate itself for further data mining

such as clustering or association rule learning. Semantic

graphs are rich models in the sense that typed nodes and

labeled edges provide more information that typical network

analyses problems. This richness provides further opportu-

nity to identify patterns at different levels of abstraction.

This is similar to the optimal resolution problem in data

mining. For example, in [5] a wavelet-based multi-resolution

decomposition is used to formulate two different sets of

texture features for clustering. Each feature set operates at

a different image resolution, one can be pixel color and the

other can be texture. For each feature set, different distance

measurement techniques are designed and experimented for

clustering images in a database.

In the case of semantic graph data, what is the appropriate

level of abstraction at which a visualization or data mining

should take place? Should we “look” at individual “pixels”

in an image or the different “textures”? We submit that there

is no “optimal” resolution, it all depends on what one wishes

to examine, the equivalent of tree patterns or forest patterns.

Some more recent work [6] employs multi-resolution data

mining to obtain motifs at different resolutions in a time

series allowing the user to navigate along the top K motifs.

And our own work in semantic graph motif mining [7] may

require a coarse-grained approach in order to scale.

Thus our second method of ontological scaling facilitates

this by using an ontology to provide a scaling factor that

can be dialed up or down. Higher and more abstract views

are achieved by applying class and property inferences at

different hierarchical levels in the ontology and recomputing

the extant ontology with those inferences.
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We present our methodology, and then demonstrate the

results of applying it to three different real-world semantic

graphs: Uniprot [8], LUBM [9], and BTC [10].

II. GRAPH DATASET FILTERING

A dataset containing semantic information, in RDF [11]

triple format for example, can conceptually be viewed as

a knowledge base of binary predicates represented as a

directed, labeled (typed) graph. We refer to the knowledge

base graph represented by the edge list of all the original

the triples as Gkb. Each triple 〈s, p, o〉 in Gkb represents a

directed edge with the label p from the subject node s to

the object node o.

Semantic graph databases typically contain a large amount

of supporting, ancillary, redundant, or simply extraneous

information over and above the core interesting patterns

intended to express relations between the modeled entities

being represented. This “bloat” is both noise distracting

from core patterns in visualization and discovery and also

a computational burden (especially in graphs which are

already on the order of billions of edges). So before building

the extant ontology we need to identify and remove edges

within Gkb that are not semantically significant. We do this

in a number of stages:

1) owl:sameAs Cliques: Nodes in semantic graphs are

intended to be unique, as reflected in their Uniform

Resource Identifiers (URIs). The owl:sameAs predi-

cate is used to identify distinct nodes which are consid-

ered to be equivalent within the semantic model. Since

owl:sameAs is transitive, reflexive, and symmetric,

groups of nodes connected by owl:sameAs form

complete, disjoint subgraphs (cliques) which should

be contracted into single meta-nodes.

2) Ontological Information: As noted above, many

triples in a semantic graph database carry meta-

information or typing information in the ontology. So

we cast the semantic graph as Gkb = Gins ∪ Gont,

where Gont constitutes the ontological sub-graph of

Gkb consisting of meta-data assertions, and Gins its

“instance subgraph” consisting of data assertions.

In our case, Uniprot and LUBM are provided with

Gont and Gins already seperated; while BTC is much

more noisy, and contains ontologies and instances in

the same dataset. The procedure of separating out the

ontologies from the instance graphs may not be trivial

within an RDF dataset and there could be more than

one ontology accompanying the Gins.

3) Reification Definitions: Reification is a mechanism

to represent additional information (meta-data) about

a triple through materialization of additional nodes and

links in Gins. A common use of reification is the rep-

resentation of provenance, as shown in Figure 1. Con-

sider the triple 〈n781, uniprot:has sequence, n329〉, in-

dicating that protein n781 has sequence n329. We wish

to record that this triple was created by the person

represented by node n921.

Figure 1. An edge requires four extra edges to define reification

These two information-carrying statements are repre-

sented by the solid arrows in Figure 1, but additionally

it is required to create a new node n133 to indicate

the first triple itself as a statement. The dashed arrows

represent the statements which define the reification.

Hence in order to add the one goal statement, reifi-

cation instead resulted in the addition of a total of

five statements, which are semantically redundant in

the context of the model. It is not uncommon for

reification to contribute up to 25% of the size of the

graph (see table I).

Modern triple stores (e.g. Sesame [12]) provide named

graph or context mechanisms that enable more com-

pact representations of reification. When exploiting

such mechanisms, pure triple representations would

automatically exclude the reification statements. Other

approaches such as a hybrid triple stores [13] store the

meta-data in a conventional relational database model

which is best suited for accommodating such uniform

structures. Similarly, this approach automatically re-

moves reification from the triple-based information.

4) Literal Edges: The instance graph Gins is comprised

of nodes which are either URIs, blanks, or literals.

URI and blank nodes are nodes with unique global or

local identifiers respectively. They constitute the core

of the semantic graph by representing the entities they

model, and have types with unique properties on which

inference can occur. Literal nodes are string or integer

values, not unique objects on which inference can be

performed (they are terminals in the graph). We have

found that removing literal nodes and terminal edges

leading to them can eliminate up to 60% of the edges

in the dataset (see table II).

III. THE EXTANT ONTOLOGY

Assume an instance graph, Gins which has been filtered

as described in the previous section. We then compute a new

graph, Gext as an extant ontology of Gins. Both graphs are
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labeled and directed, but Gext is additionally weighted with

quantities (integers or relative frequencies).

Listing 1 shows the SPARQL [14] code for generating

a simple extant ontology showing statistical frequencies

(integer counts) on edges. As illustrated in figure 2, the

algorithm iterates over all nodes s in triples 〈s, rdf:type, C〉,
thus representing s as being in class C, and creating a single

node for C in the extant ontology to represent that class.

Whenever an edge 〈s, p, o〉 with label p is encountered in

the instance graph between two nodes of types Cs and Co,

a corresponding edge with the same label and direction is

created in the extant ontology between the nodes repre-

senting those classes. A number reflecting the frequency

of these specific edges between those two specific types

is updated and appended to the edge label in the extant

ontology. Several nodes in the dataset may have more than

one type in which case they contribute to more than one

edge count and node label in the extant ontology.

ps o

rdf:type

Cs

rdf:type pCs Co

Co

Figure 2. The mapping of triples in the instance graph to the extant

SELECT ? c l a s s 1 ? p ? c l a s s 2 (COUNT( ? p ) ) as ? count
from <BTC> {

? s ? p ? o .
? s a ? c l a s s 1 .
? o a ? c l a s s 2 .

}group by ? c l a s s 1 ? c l a s s 2 ? p order by desc ( ? count ) ;

Listing 1. SPARQL code to generate a simple extant ontology

Figure 11 shows an example of a portion of the extant

ontology we created from the 2010 ISWC bilion triples

challenge, where edges are labeled with counts of that

particular connection occuring between the two entities in

the actual data. Relative frequencies i.e proportion of the

overal number of predicates in the graph can be used as

well.

IV. ONTOLOGICAL SCALING

Ontological scaling employs an ontology as a selector

“knob” to decide on the desired filtering and scale (reso-

lution) to visualize and analyze the data. Using a scaling

ontology, subclasses can be replaced by immediate or higher-

level super classes which results in an adjustment in the

relevant edge types and counts connecting the nodes in

the extant ontology. We illustrate the use of ontological

scaling with example subgraphs. Consider the subgraph of

the Uniprot extant ontology in figure 3, and that additionally

we have a scaling ontology with the class hierarchy shown

in figure 4, and relation hierarchy shown in figure 7. In this

case we used the standard Uniprot ontology [8].

Figure 3. Example subgraph before inferring class subsumption

Applying subsumptive inference on instances in the class

hierarchy and recomputing the extant ontology yields the

graph in figure 5. Note the reduced number of edges after

collapsing all the different subclasses of annotation into one

super class, the adjustments of predicate percentages and the

preservation of the semantics.

Similarily, we can summarize the extant ontology even

further and create a higher abstraction view by applying

property inferences such as subsumption and other inference

such as symmetry. Consider another subgraph of the Uniprot

extant ontology shown in figure 6 as part of the extant

ontology and we wish to clear this up a little bit more

to understand the relations better. Inference guided by the

Thing
Annotation

Non-terminal Residue Annotation
Caution Annotation
Catalytic Activity Annotation
Chain Annotation
Subcellular Location Annotation
Subunit Annotation
Metal Binding Annotation
Transmembrane Annotation
Binding Site Annotation

Figure 4. Class hierarchy used for ontological scaling

Figure 5. Subgraph of fig 3 after inferring class subsumption
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scaling ontology replaces the edges alternativeName, sub-

mittedName, and recommendedName with an edges labeled

with their super property: name. The percentage is adjusted

as the sum of all the sub properties properties.

Figure 6. Example subgraph before inferring property subsumption

Ontological scaling can be conducted either uniformly to

all terminals of the scaling ontology regardless of their depth

so in each iteration the data view gets coarsened for all

entities in the scaling ontology terminals, or it can be applied

level by level, at depth N , N − 1, and so on until the root

node in which case the finer entities in the extant ontology

get closer to their finer counterparts before uniform scaling

hits the shorter branches of the tree in the scaling ontology.

The choice between these two modes depend on what you

are looking for. In the experiment we present here we

opted for rolling inference in level by level. In the previous

example we assumed that ontologies are represented as class

hierarchies which are trees. Multiple inheritance may require

additional treatment such as through the creation of extant

nodes that represent compound types.

V. DATASETS AND EXPERIMENTAL SETUP

We examine three publicly available semantic graph

datasets with varying properties.

1) BTC2010: This dataset has been crawled from the

public Web and contains anything from connected

people to connected proteins and semantic Wikipedia

entires. The data is available as part of the Billion

property
part

component
domain

name
alternativeName
submittedName
recommendedName

Figure 7. A relation hierarchy.

Figure 8. Subgraph of fig 6 after inferring property subsumption

Triples Challenge [10] held at the International Se-

mantic Web Conference and is comprised of more

than 3 billion quads, two fields to specify end nodes

and one for the edge label. The fourth field is used

to indicate the source of the triple and could be

used for provenance (for example). After removing

duplicates in the quads we found this dataset to contain

1.43 billion triples after ignoring the quad field and

removing duplicates[15].

2) UNIPROT: This is the UniProtKB of the Universal

Protein Resource dataset, a comprehensive repository

of protein sequence and annotation data. This data has

been converted to semantic formant by the Unipro-

tRDF project [8]. The size of this dataset is 2.04 billion

triples (graph edges). A few additional small datasets

provided are excluded as ancillary.

3) LUBM8K: This is Lehigh University Benchmark and

was developed to facilitate the evaluation of Semantic

Web repositories in a standard and systematic way.

The benchmark is intended to evaluate the perfor-

mance of those repositories with respect to extensional

queries over a large data set that commits to a single

realistic ontology. It consists of a university domain

ontology, generating customizable and repeatable syn-

thetic data [9]. The 8K version contains information

about 8,000 universities and consists of 1.07 billion

triples.

LUBM is the most uniform and schema-compliant of

these as it is generated synthetically. BTC is the most ad
hoc as it is the result of a web crawl and contains many

conflicting ontologies and even ontology fragments.

We loaded these datasets in a dedicated triple store

running on a high-end server with 48 GBs of memory and

two quad-core 2.96 GHz Intel Xeon CPUs. We were able

to perform many of the basic experiments and statistics

gathering on the data using SPARQL queries though several

other scripts and data summarizing methods external to the

triple store had to be deployed (for example in performing

class and property inferences). More details on dealing with

large triple stores can be found in our previous work [7],

[15], [16], [17]

VI. RESULTS

A. Initial Filtering

1) Reification: Of the 2 billion edges in the Uniprot

graph, about 139K are reified. Since each refied statement

requires four edges just to define the reification hook (see

figure 1), this means there are 4 × 138.7M = 554.9M such

wasteful edges in the dataset. BTC2010 contains far fewer

refied edges (6.05M) consuming only 24.2M additional

edges to implement. LUBM is synthetic and no reification

is included by design.
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# Original # Reification %
Edges (M) Edges (M) Reification

BTC2010 1,400 24 1.7%
UNIPROT 2,040 555 27.2%
LUBM8K 1,070 0 0%

Table I
NUMBER OF EDGES USED TO DEFINE REIFICATION

2) Terminal Nodes and Edges: We removed all edges

leading to literals in the three dataset we experimented with

and discovered that this significantly reduced the size of the

graphs in all cases. In the BTC, the reduction in the number

of edges was about 63% while edges leading to terminal

literal nodes constitute about 30% in the other dataset.

Original (M) No-Literals (M) % Reduction

BTC2010
Edges 1,430 530 63%
Nodes 281 221 21%

UNIPROT
Edges 2,040 1,400 31%
Nodes 461 404 12%

LUBM8K
Edges 1,070 710 34%
Nodes 263 174 34%

Table II
EFFECT OF REMOVING LITERALS ON THE GRAPH SIZE

B. Coverage of Types and Predicates

To support the use of our approach in creating the extant

ontology and refining it further with class and predicate

inferences, one needs to understand the spread of the usage

of both the types and the predicates in each dataset. For

LUBM8K and UNIPROT table III below shows that a few

distinct types and predicates exist in the first place thus our

approach which is based on typing and inference in both

will be comprehensively representative of all these datasets.

#Distinct Types #Distinct Predicates
BTC2010 168K 95K
UNIPROT 119 110
LUBM8K 15 17

Table III
TOTAL DISTINCT TYPES AND PREDICATES IN EACH DATASET

Initial examination of the web-crawled BTC data shows

that there are around 168K different types and 95K dif-

ferent predicates so one may wonder if so many types

and predicates may not be narrowed enough to summarize

such a large and diverse dataset. One could understand how

representative the top N number of extant ontology edges

are of their dataset by summing up their labeled percentages,

however, in addition we examined not only the number

of types and predicates in BTC but also their cumulative

distributions as figures 10 and 9 show.
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Figure 9. Cumulative Predicate Coverage in BTC

The solid line in figure 9 shows that before removing the

terminal edge predicates, the 64 most common predicates

cover 50% of the BTC data, while the top 256 predicates

cover 91%. The dashed line is after excluding the terminal

edges, where now the 64 top non-terminal predicates cover

86% of the data. This is significant in light of the dataset

containing more than 95K different predicates.

Figure 10 shows that though there are 168K different

classes in BTC, the top 16 most common ones of them cover

80% of the data and 64 classes are sufficient to cover 95%

of the dataset.
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Figure 10. Cumulative Type Coverage in BTC

C. Building Extant Ontologies

We computed the extant ontologies for the three datasets:

BTC10, LUBM8K, and UNIPROT. Figure 11 shows the top

30 edge counts in BTC10. There are about 70M triples with

the predicate foaf:known connecting subject and object

of type foaf:Person, the highest count. Some Uniprot

edges are also present in BTC due web crawling.

The extant ontologies for LUBM8K and UNIPROT are

shown in figures 12 and 13. For UNIPROT we truncated a

portion of the image so it can be more readable in print. We

are making the full .pdf and .dot graph visualization files

for these figures available online1. The UNIPROT extant is

effectively showing, in only 243 edges, the full semantic

structure of a 2 billion edge graph.

1http://hpc.pnl.gov/people/sinan/wi11paper
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Figure 11. Extant Ontology for the Top 30 Link-node-types in BTC10

�

�

�

Figure 12. The full extant ontology for LUBM8K.
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Figure 13. Part of the extant ontology for Uniprot - image truncated to scale for readability. See http://hpc.pnl.gov/people/sinan/wi11paper for full details

D. Ontological Scaling

Figure 14 shows the same extant ontology of figure 13

with ontological scaling applied using the class and relation

hierarchies shown in figures 4 and 7, with three iterations

for class inferences and one iteration for predicate inference.

This is level 1 of the scaling ontology. Level 0 would

contains a single node labeled with “Thing” and a single

edge connecting that node to itself with the label “property”

and a percentage of 100. Examining the ontologically scaled

figure of UNIPROT reveals that about 52% of the edges are

rdfs:seeAlso edges which is essentially equivalent to a

regular web link so there is a need to produce dataset with

even richer semantics.

VII. CONCLUSIONS

We presented two methods for summarizing and visualiz-

ing the contents of semantic graphs. We explained conceptu-

ally why they are useful and also demonstrated how they can

be used to understand and interpret real datasets. The extant

ontology represents a typed statistical view of the structure

and patterns of connectedness between distinct types in the

graph. Inference can be applied to a scaling ontology to

decide on the level of detail present to the analyst whether

this analyst is a human or another automated procedure.

This is essential for optimizing resources in such big graphs

and also necessary for visualizing the relevant components

and reduce information overload. Furthermore the scaling

ontology can be viewed as a controlling mechanism to

decide on the level of trade-offs between computation and

details of the results. We have shown that even in what may

seem as diverse and huge datasets such as the BTC web

crawl with hundreds of thousands of classes and predicates,

only a very tiny portion of those is necessary to cover the

entire dataset. This is good news for implementors of triple

stores as they can optimize for these facts. For example

implementing classes and terminal edges as node properties

significantly reduces the graph size and the computational

requirements to search and infer over it. However, this can

be less exciting for application developers as the semantic

datasets we examined seem to not yet be sufficiently covered

with the diverse set of different predicates and classes needed

to motivate some of the expected use cases.
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Figure 14. Uniprot extant from fig 13 after ontological scaling using inferences of class and property subsumptions up to level 1
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