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Introduction to SEAK

Many applications of high performance embedded computing are limited by
performance or power bottlenecks. Consider a mobile imaging system that
recognizes faces from an array of cameras. Because face recognition is a com-
putationally intensive task, potential solutions may not fit within the mobile
system’s power and size envelope. Suppose the system’s designer desires the most
power efficient face recognition solution that satisfies a given real-time constraint.
That is, the solution may use any algorithm on any architecture that meets
the given correctness, time, and power constraints. To solicit the best solutions,
how should the designer capture the key input and output requirements without
biasing toward specific algorithms or architectures?

The SEAK benchmark suite generalizes this question. The benchmark suite
is a collection of constraining problems — application bottlenecks — that cap-
ture common embedded application bottlenecks. We have designed SEAK’s
constraining problems (a) to capture these bottlenecks in a way that encourages
creative solutions; and (b) to facilitate rigorous, objective, end-user evaluation
for their solutions. To avoid biasing solutions toward existing algorithms, SEAK
constraining problems use a mission-centric (abstracted from a particular al-
gorithm) and goal-oriented (functional) specification. To encourage solutions
that are any combination of software or hardware, we use an end-user black-box
evaluation that can capture tradeoffs between performance, power, accuracy, size,
and weight. The tradeoffs are especially informative for procurement decisions.
We call our benchmarks future proof because each mission-centric interface and
evaluation remains useful despite shifting algorithmic preferences.

It is challenging to create both concise and precise goal-oriented specifications
for mission-centric problems. An IPDPS ’16 paper [107] describes the SEAK
benchmark suite and discusses these challenges.

A constraining problem consists of a specification document and a source
code distribution. The specification document (a) justifies each problem, (b)
describes input and output requirements, and (c) details evaluation criteria for
correctness, performance, and power. The source code repository contains input
generators and correctness checkers. Although the specification does not require
reference implementations, when available we include representative solutions to
use as reference implementations.

A SEAK evaluation ranks results according to criteria such as a solution’s
correctness, power, cost, size, and weight. The evaluation results establish a
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parial ordering among solutions. An inefficient solution is any solution where
one performance metric can improve without degrading another. An efficient
solution is one where no improvement is possible without degrading another
metric. Efficient solutions form an efficiency frontier. One can use the efficiency
frontier to identify the best solutions given a set of constraints.



Constraining Problem 1

Acoustics: Automatic Speech Recognition

Seunghwa Kang (PNNL), Joseph B. Manzano (PNNL), Nathan R. Tallent
(PNNL)

1.1 Justification
This constraining problem asks participating solutions to perform automatic
speech recognition: transcribing spoken texts using a computer system. Early
speech recognition research had focused on recognizing an isolated word or a
short phrase from a small set of known words (small vocabulary) assuming
that words or phrases are spoken by one or few speakers with known vocal
characteristics (speaker dependent speech recognition) under low background
noise [4, 40]. The advances over the past few decades have shifted the focus
to recognizing long continuous speech (e.g. broadcast news transcription) or
spontaneous speech (common in conversational speech) composed of a large
or even unlimited number of words (large or unlimited vocabulary) uttered by
arbitrary speakers (speaker independent speech recognition) in noisy acoustic
environments [4, 40, 100]. The speech recognition performance has significantly
improved in the past several years largely owing to the adoption of deep neural
networks [48].

This constraining problem asks participants to develop a speaker independent
large vocabulary continuous speech recognition system for English under various
noisy conditions. The Defense Advanced Research Projects Agency (DARPA)
has invested on speech recognition for decades over multiple projects such as
the 1000 word resource management database project [93], Effective Affordable
Reusable Speech-to-Text (EARS) [23], Global Autonomous Language Exploita-
tion (GALE, focusing on transcribing foreign languages such as Mandarin Chinese
and Arabic) [24, 105], and Robust Automatic Transcription of Speech (RATS,
focusing on language and speaker identification and keyword spotting under
adverse acoustic environments) [31]. Speech recognition techniques can be uti-
lized in multiple military applications; for example, low bit rate communication,
voice control of military devices, military intelligence systems, and language
translation. Low bit rate communication of speech is necessary to provide more
channels, enhance security, and improve robustness [119]; speech recognition
technique is used to transform speech signals to intermediate codes (e.g. phonetic
units) which require less bandwidth to transmit [119]. Voice control of computers,
weapons, and sensor systems improves the productivity of military officers but
this application requires high speech recognition performance under adverse
conditions (such as moving military vehicles in noisy environments) [119, 88, 117].
Speech recognition is also necessary in searching, sorting, and filtering a large
volume of speech data (e.g. a large volume of broadcast news) [119, 88]. Speech
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recognition is the first step in language translation between military personnel
in multinational forces as well [88].

This constraining problem adopts two existing databases as proxy data to
represent speech recognition challenges in military applications. Databases are
selected based on their relevance to military application challenges and public
availability.

The CMU PDA database [82, 81] contains transcripts and single-channel
and multi-channel recorded speech audio data. Participating speakers read
transcripts displayed on a hand-held PDA in varying noisy environments. For
the single-channel data, 11 speakers participated in the recording. Each speaker
read about 140 sentences under noisy environments. The first 40-43 sentences
are selected from the Wall Street Journal 5K test database and the remaining
sentences are selected from the Wall Street Journal training database [85]. The
built-in microphone on a PDA is used for recording speech in noisy environments.
An additional close-talk microphone is used to record speech with higher signal-
to-noise ratio (SNR). For the multi-channel data, 16 speakers participated in the
recording. The first 8 speakers read transcripts displayed on a hand-held PDA
under relatively low noise conditions. The remaining 8 speakers read transcripts
under noisier environments. Each speaker read approximately 50 sentences. The
first 40-43 sentences are from the Wall Street Journal 5K test database and
the remaining sentences are numbers having multiple digits. Four microphones
attached around a PDA are used for recording speech in noisy environments, and
an additional close-talk microphone is used to obtain clearer speech data similar
to the single-channel case. The single-channel dataset provides 11 KHz speech
audio data. For the multi-channel dataset, 11 KHz and 16 KHz speech data are
provided. This database is challenging due to varying noisy environments and
continuously changing positions of a speaker and microphones on a hand-held
PDA. Speech recognition systems are expected to exploit speech data from
multiple channels to overcome the challenges. We adopt this database due to its
availability to the public and the relevance of the challenges to various military
applications—e.g. speech recognition in military vehicles operating in noisy
conditions.

The 3rd CHiME Speech Separation and Recognition Challenge [9] provides
a database of recorded speech utterances in challenging noisy environments.
Participants read transcripts from the Wall Street Journal corpus displayed on a
tablet in multiple acoustic environments: sound proof booth, bus, cafe, pedestrian
area, and street junction. Speech utterances were recorded using six microphones
attached on a tablet and a separate close-talk microphone. The database provides
both real data (speech utterances recorded in noisy environments) and simulated
data (speech utterances generated by mixing clean speech data with separately
recorded noise data). The audio data were initially recorded in 24 bits at 48 KHz
and downsampled to 16bit 16 KHz for distribution. The database is composed
of training, development, and final test datasets. The training dataset includes
1600 real utterances (from four speakers) and 7138 simulated utterances (from
83 speakers). The simulated utterances are generated by mixing the Wall Street
Journal data (clean speech) with background noise. The development dataset



has 410 real utterances per noisy environment and 410 simulated utterances per
noisy environment for the four different environments (bus, cafe, pedestrian area,
and street junction). The development dataset data are uttered by four new
speakers. The final datatest set includes 310 real utterances and 310 simulated
utterances per noisy environment. Four new speakers participated in generating
the test dataset. Speech utterances recorded in sound proof booth are mixed
with background noise to generate simulated data for the development and test
datasets. The test dataset was disclosed later (June 3rd, 2015) than the training
and development datasets close to the final challenge submission deadline (July
10th, 2015); the test dataset will be used for final evaluation of the submissions.
This database is challenging due to noise coming from different environments
similar to the PDA database. This database is larger and newer than the PDA
database.

1.2 Description
1.2.1 Input
The CMU PDA database is available to download from the following url: http:
//www.speech.cs.cmu.edu/databases/pda. The compressed PDA.tar.gz file
includes the following four directories.

• doc: This directory includes documents and images describing the database.

• lists: This directory includes transcripts and other auxiliary files related
to speech utterances in the database.

• PDAs: This directory includes the 11 KHz single-channel speech audio
data from 11 speakers (one sub-directory per speaker).

• PDAm: This directory includes the 11 KHz and 16 KHz multi-channel
speech audio data from 16 speakers (one sub-directory per speaker).

Refer to the CMU PDA database for further details.
This constraining problem uses the 16 KHz multi-channel speech audio data

for testing. Participating systems can use data from all four channels but cannot
use speech audio data from the close-talk microphone. Speech recognition needs
to be performed using speech audio data only; speaker id, utterance number,
and channel number in the file name cannot be used for speech recognition.
Participating systems can be trained using any data (e.g. the Wall Street Journal
training data) excluding the test data (both 11 KHz and 16 KHz data cannot
be used for training) and their postprocessed derivatives.

Accessing the 3rd CHiME challenge database requires registering at the
following url: http://spandh.dcs.shef.ac.uk/chime_challenge/data.html.
Registrants will receive an email providing a link to the download page. The
download page has multiple datasets and baseline software tools. The following
explains several relevant items in the database.

http://www.speech.cs.cmu.edu/databases/pda
http://www.speech.cs.cmu.edu/databases/pda
http://spandh.dcs.shef.ac.uk/chime_challenge/data.html


• CHiME3_isolated_tr05_real: This is a training dataset having real data
recorded in soundproof booth and noisy environments. Each utterance is
isolated from the entire recording and saved in a separate file.

• CHiME3_isolated_dt05_real: This is a development dataset having real
data recorded in soundproof booth and noisy environments. Each utterance
is isolated from the entire recording and saved in a separate file.

• CHiME3_isolated_et05_real: This is a test dataset having real data
recorded in soundproof booth and noisy environments. Each utterance is
isolated from the entire recording and saved in a separate file.

• CHiME3_isolated_tr05_simu: This is a training dataset having simulated
data generated by mixing clean speech data with background noise. Each
utterance is isolated from the entire recording and saved in a separate
file. Downloading this dataset requires a license to access the Wall Street
Journal data.

• CHiME3_isolated_dt05_simu: This is a development dataset having
simulated data generated by mixing clean speech data with background
noise. Each utterance is isolated from the entire recording and saved in a
separate file.

• CHiME3_isolated_et05_simu: This is a test dataset having simulated
data generated by mixing clean speech data with background noise. Each
utterance is isolated from the entire recording and saved in a separate file.

• CHiME3_backgrounds: This has background noise data. New simulated
speech data with varying signal-to-noise ratio (SNR) can be generated by
mixing speech data recorded in soundproof booth with background noise
data.

Refer to the CHiME homepage for additional details.
This constraining problem tests participating systems using the test dataset

having real data (CHiME3_isolated_et05_real). Participating systems can use
data from all six channels but cannot use speech audio data from the close-talk
microphone. Speech recognition needs to be performed using speech audio data
only; speaker id, utterance number, location id, and channel number in the
file name cannot be used for speech recognition. Participating systems can be
trained using any data excluding the test data (CHiME3_isolated_et05_real)
and their postprocessed derivatives.

1.2.2 Output
A trained speech recognition system should output one transcript per each
utterance in the test datasets. One may separately train a speech recognition
system for the PDA test dataset and the CHiME test dataset, but only a single
trained speech recognition system with a single set of parameters should be used
for each test dataset.



1.3 Evaluation
1.3.1 Correctness
Word error rate (WER) [4, 40] is used to measure speech recognition accuracy.
The word error rate is computed by dividing the number of word substitutions,
deletions, and insertions by the total number of words in the reference transcript;
WER = S+D+I

N , where S is the number of substitutions, D is the number of
deletions, I is the number of insertions, and N is the total number of words in
the reference transcript.

1.3.2 Performance and Power
Execution time is separately measured for training and testing. Power con-
sumption is separately measured for training and testing as well. The overall
performance of a speech recognition system will be evaluated based on the word
error rate (lower is better), execution time for training, power consumption for
training, execution time for testing, and power consumption for testing. Different
weights will be assigned to different metrics based on varying requirements in
military sites; in general, execution time and power consumption for training
are less important as training can be performed off-site using cluster computers
while testing (and actual speech recognition) will more likely to be performed
using embedded systems in military sites.



Constraining Problem 2

Radio: Synthetic Aperture Radar Image
Formation

Nitin A. Gawande (PNNL), Nathan R. Tallent (PNNL), Joseph B. Manzano
(PNNL)

2.1 Justification
Simple Radar system has the potential to achieve fine range resolution, but it is
constrained to relatively poor azimuthal resolution [18]. The synthetic aperture
Radar (SAR) imaging technique can achieve high azimuthal resolution as well
[18]. SAR synthesizes a large aperture using Radar platform motion and then
forms an image using data corresponding to the pulses acquired over the large
synthetic aperture. SAR technique has wide applications in imaging through
aerial borne platforms and satellites.

The purpose of SAR is to make repeated observations of a scene of interest
over a large range of angles of observation. These observations are then post-
processed to resolve an image of the scene whose resolution is limited by the
angular range of the observations rather than by the size of the physical receiver.
The amount of data needed for image formation is a function of the radar system
parameters, desired image resolution, and coverage area.

SAR radars require a moving transmitter, and long range moving target
identification must be done at high elevations that are not achievable from a
ground station. The raw data rates for radars are much higher than the fastest
available military communications link can support, requiring processing and
data reduction on the mobile platform when the latency required is less than
the mission endurance.

There are many algorithms to implement SAR image formation. These
algorithms are broadly classified in two categories: (1) frequency domain methods,
and (2) time domain methods. One of the most flexible and general approach
currently in use is the backprojection approach which falls in the category of time
domain methods. Novel algorithms that offer high performance with improved
image quality have evlolved over time. However, high resolution SAR imaging in
real-time require significant computing resources. In addition, many platforms of
interest for radar are limited in size, weight, and ability to dissipate energy. As
a result, many SAR missions are constrained by arithmetic throughput, internal
data movement throughput, and total sensor input data rates. We therefore
define image formation as one of the most constraining problems in the SAR
domain.
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Table 2.1: Input parameters for SAR image formation.

Parameter Variable (Dimensions)
Carrier frequency fc
Bandwidth, transmitted signal f0
Baseband bandwidth is 2× f0
Pulse duration Tp
Range distance to center of target area Xc
Cross-range distance to center of target area Yc
Target area (range × cross-range) (2Xc × 2Yc)
Minimum half length synthetic aperture Lmin
Output image (complex valued) I (Nx ×Ny)

2.2 Description
Although SAR can utilize a three-dimensional radar data cube, we consider the
two-dimensional case. In the two-dimensional case there is one platform sensor
(channel) with an aperture of length 2L, {−L to + L} in the coordinate system
used in the input generator. This results in a Radar signal data matrix of Np
radar pulses and K range bins. A pulse is one transmission of radar energy;
given the duration of a pulse and the relative speeds of pulse propagation and
sensor movement, the return pulse relates to both time and location. The range
bins correspond to K complex-valued samples per pulse. Further description of
input and output for this problem is described in following sub-sections.

2.2.1 Input
The input parameters for SAR image formation problem are given in Table 2.1.
In this problem we make use of two-dimensional coordinates. However, the
complexity of the image formation algorithm remains unchanged from that of a
three-dimensional image scene. We use template images of targets to construct
Radar signal response. The input parameters including the template images are
different for a small, medium, and large size problem. The computational load
of image formation increases with the size of the problem. We provide input
generator and reference implementations for stripmap and spotlight modes of
SAR.

2.2.2 Output
2.2.3 Signal Model
A signal model for monostatic SAR is described here. A more detailed description
of signal model is described else where [97], [44]. The sensor platform moves
nomally in the Y-direction which is perpendicular to the range, X-direction. The



antenna (a) phase center has a three-dimensional spatial location denoted by
ra(τ) = (xa(τ), ya(τ), za(τ)). Where, τ denotes the synthetic aperture, or slow
time, domain. A target is specified at a location r(τ) = (x(τ), y(τ), z(τ)). For a
stationary target, the dependence of r on τ can be dropped. The distance of the
target from the antenna phase center, da0(τ) can be computed by equation 2.1.

da0(τ) =
√

(xa(τ))2 + (ya(τ))2 + (za(τ))2 (2.1)

The antenna periodically transmits pulses of energy in the direction of
the target that reflects off scatterers in the scene. Some of the energy of the
transmitted pulses is received by the radar. There are Np number of pulse
sampled in a given synthetic aperture. The sequence of transmission time of each
pulse is given by {τn = 1, 2, . . . Np}. There are K frequency samples, per pulse.
The sequence of frequency values is given by {fk = 1, 2, . . .K}. The complex
signal from the target is given by Equation 2.2.

S(fk, τn) = A(fk, τn)exp
(
−j4πfk∆R(τn)

c

)
(2.2)

The amplitube, A(fk, τn), is related to the radar cross section of the target.
The phase is dependent on the frequency of each sample and on the differential
range, ∆R(τn) which is given by Equation 2.3.

∆R(τn) = da0(τ)− da(τ) (2.3)

The frequency samples, {fk} have a median value denoted by fc and a step
size denoted by ∆f . The free range extent of SAR image, Wx is given by
Equation 2.4.

Wx = c

2∆f (2.4)

Considering a total bandwidth of the received pulse equal to 2f0, the range
resolution is given by Equation 2.5.

∆x = c

4f0
= c

2(K − 1)∆f (2.5)

The cross-range extent of SAR image, Wy can be computed based on the
azimuth step size ∆θ, and the minimum wavelength λmin as per Equation 2.6.

Wy = λmin
2∆θ (2.6)

The total azimuth angle traversed in the synthetic aperture is 2θa. The
center wavelength is λc such that λc = c/fc, the cross-range resolution, ∆y is
given by Equation 2.7.

∆y = λc
4θa

= λc
2(Np − 1)∆θ (2.7)



2.2.4 Matched Filter Algorithm
Matched filter is a time-reversed complex-conjugate form of the received signal
on itself. Considering an isotropic point scatterer which will have a constant
amplitude. Therefore A(fk, τn) can be considered to have a constant value. The
matched-filter denoted by I(r), at location r is given by Equation 2.8.

I(r) = 1
NpK

Np∑
n=1

K∑
k=1

S(fk, τn)exp
(

+j4πfk∆R(τn)
c

)
(2.8)

Equation 2.8 is applied for each pixel to form a reconstructed SAR image.
Application of Equation 2.8 requires computation of differential range, ∆R(τn)
for all pixels for every pulse. In order to reconstruct a two dimensional SAR
image of size N×N , the matched filer algorithm has a computational complexity
of O(N4).

2.2.5 Backprojection Algorithm
The matched filter response as given by Equation 2.8 can be used to compute
the target response at a discrete range bin, m. Equation 2.8 forms the basis for
the derivation of the backprojection algorithm. The backprojection algorithm is
described in many papers and textbooks [44, 78, 33].

The range profile at range bin m for a pulse received at slow time τn is given
by Equation 2.9.

s(m, τn) =
K∑
k=1

S(fk, τn)exp
(

+j4πfk∆R(τn)
c

)
(2.9)

In order to compute the contribution to a pixel at location r for a given pulse
n, ∆R(τn) is calculated and used to compute interpolated value of s(m, τn).
This interpolated value sinter(r, τn) is then obtained for every pulse and summed
up to reconstruct an image I(r) as given by Equation 2.10.

I(r) =
Np∑
n=1

sinter(r, τn) (2.10)

The output of backprojection is a complex-valued image of dimension Nx×Ny.
To form the output image, a contribution from each pulse is integrated into each
pixel. Thus, the computational complexity for backprojection is O(Np ·Nx ·Ny).
For the nominal case where the number of pulses and pixels-per-side of the formed
image are comparable (e.g., N), the computational complexity of backprojection
is O(N3). To date several variants of backprojection algorithm have been
implemented with differences in computational complexity and image quality.

Here, we briefly described two implementations of SAR image formation,
however any novel implementation can be used to reconstructed the SAR output
image. Figure 2.1 shows the input targets in SAR imaging scene and backpro-
jection reconstruction for spotlight mode. Figure 2.1a is used as an input target



imaging scene. Using the parameters as per input specification, the signal from
the input image is constructed. With the application of suitable SAR image
formation algorithm, the target signal is used to reconstruct image of the scene.
Figure 2.1b shows the reconstruction of the scene using the backprojection
algorithm. Here, Figures 2.1a and 2.1b are images that are cropped out of the
entire SAR imaging scene.

(a) (b)

Figure 2.1: SAR input and output images: (a) Input targets (b) Backprojection
reconstruction.

2.3 Evaluation
2.3.1 Correctness
Correctness can be measured by comparison of reconstructed SAR output image/s
to that with the input images that were used to construct the target signal. An
exact match to the input image is not anticipated, so a peak signal to noise ratio
(PSNR) will be computed between the input image and the SAR reconstructed



image. The PSNR values for the output images will be used as a metric to
evaluate any novel implementation of image formation algorithm.

2.3.2 Performance and Power
The unit of work for relative comparisons is a pixel in the output image. There
are Nx ×Ny units of work.

Performance is evaluated with time per units of work.
Power is evaluated with Watts per unit of work.



Constraining Problem 3

Radio: Synthetic Aperture Radar Target
Detection

Nitin A. Gawande (PNNL), Nathan R. Tallent (PNNL), Joseph B. Manzano
(PNNL)

3.1 Justification
Simple Radar system has the potential to achieve fine range resolution, but it is
constrained to relatively poor azimuthal resolution [18]. The synthetic aperture
Radar (SAR) imaging technique can achieve high azimuthal resolution as well
[18]. SAR synthesizes a large aperture using Radar platform motion and then
forms an image using data corresponding to the pulses acquired over the large
synthetic aperture. SAR technique has wide applications in imaging through
aerial borne platforms and satellites.

The purpose of SAR is to make repeated observations of a scene of interest
over a large range of angles of observation. These observations are then post-
processed to resolve an image of the scene whose resolution is limited by the
angular range of the observations rather than by the size of the physical receiver.
The amount of data needed for image formation is a function of the radar system
parameters, desired image resolution, and coverage area.

SAR radars require a moving transmitter, and long range moving target
identification must be done at high elevations that are not achievable from a
ground station. The raw data rates for radars are much higher than the fastest
available military communications link can support, requiring processing and
data reduction on the mobile platform when the latency required is less than
the mission endurance.

There are many algorithms to implement SAR image formation. These
algorithms are broadly classified in two categories: (1) frequency domain methods,
and (2) time domain methods. One of the most flexible and general approach
currently in use is the backprojection approach which falls in the category of time
domain methods. Novel algorithms that offer high performance with improved
image quality have evlolved over time. However, high resolution SAR imaging in
real-time require significant computing resources. In addition, many platforms of
interest for radar are limited in size, weight, and ability to dissipate energy. As
a result, many SAR missions are constrained by arithmetic throughput, internal
data movement throughput, and total sensor input data rates. The SAR target-
detection problem differs from the SAR image-formation problem such that the
targets in the imaging scene need to be detected for the success of the mission
problem. Therefore, targets located in noisy background or appear camouflaged
in imaging scene will require rigourous processing or a novel algorithm use. We
therefore define target detection as one of the most constraining problems in the
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Table 3.1: Input parameters for SAR image formation.

Parameter Variable (Dimensions)
Carrier frequency fc
Bandwidth, transmitted signal f0
Baseband bandwidth is 2× f0
Pulse duration Tp
Range distance to center of target area Xc
Cross-range distance to center of target area Yc
Target area (range × cross-range) (2Xc × 2Yc)
Minimum half length synthetic aperture Lmin
Output image (complex valued) I (Nx ×Ny)

SAR domain.

3.2 Description
Although SAR can utilize a three-dimensional radar data cube, we consider the
two-dimensional case. In the two-dimensional case there is one platform sensor
(channel) with an aperture of length 2L, {−L to + L} in the coordinate system
used in the input generator. This results in a Radar signal data matrix of Np
radar pulses and K range bins. A pulse is one transmission of radar energy;
given the duration of a pulse and the relative speeds of pulse propagation and
sensor movement, the return pulse relates to both time and location. The range
bins correspond to K complex-valued samples per pulse. Further description of
input and output for this problem is described in following sub-sections.

3.2.1 Input
The input parameters for SAR image formation problem are given in Table 3.1.
In this problem we make use of two-dimensional coordinates. However, the
complexity of the image formation algorithm remains unchanged from that of a
three-dimensional image scene. We use template images of targets to construct
Radar signal response. The input parameters including the template images with
targets injected in the scene. The inputs are different for a small, medium, and
large size problem. The computational load of image formation increases with the
size of the problem. We provide input generator and reference implementations
for stripmap and spotlight modes of SAR.



3.2.2 Output
3.2.3 Signal Model
A signal model for monostatic SAR is described here. A more detailed description
of signal model is described else where [97], [44]. The sensor platform moves
nomally in the Y-direction which is perpendicular to the range, X-direction. The
antenna (a) phase center has a three-dimensional spatial location denoted by
ra(τ) = (xa(τ), ya(τ), za(τ)). Where, τ denotes the synthetic aperture, or slow
time, domain. A target is specified at a location r(τ) = (x(τ), y(τ), z(τ)). For a
stationary target, the dependence of r on τ can be dropped. The distance of the
target from the antenna phase center, da0(τ) can be computed by equation 3.1.

da0(τ) =
√

(xa(τ))2 + (ya(τ))2 + (za(τ))2 (3.1)

The antenna periodically transmits pulses of energy in the direction of
the target that reflects off scatterers in the scene. Some of the energy of the
transmitted pulses is received by the radar. There are Np number of pulse
sampled in a given synthetic aperture. The sequence of transmission time of each
pulse is given by {τn = 1, 2, . . . Np}. There are K frequency samples, per pulse.
The sequence of frequency values is given by {fk = 1, 2, . . .K}. The complex
signal from the target is given by Equation 3.2.

S(fk, τn) = A(fk, τn)exp
(
−j4πfk∆R(τn)

c

)
(3.2)

The amplitube, A(fk, τn), is related to the radar cross section of the target.
The phase is dependent on the frequency of each sample and on the differential
range, ∆R(τn) which is given by Equation 3.3.

∆R(τn) = da0(τ)− da(τ) (3.3)

The frequency samples, {fk} have a median value denoted by fc and a step
size denoted by ∆f . The free range extent of SAR image, Wx is given by
Equation 3.4.

Wx = c

2∆f (3.4)

Considering a total bandwidth of the received pulse equal to 2f0, the range
resolution is given by Equation 3.5.

∆x = c

4f0
= c

2(K − 1)∆f (3.5)

The cross-range extent of SAR image, Wy can be computed based on the
azimuth step size ∆θ, and the minimum wavelength λmin as per Equation 3.6.

Wy = λmin
2∆θ (3.6)



The total azimuth angle traversed in the synthetic aperture is 2θa. The
center wavelength is λc such that λc = c/fc, the cross-range resolution, ∆y is
given by Equation 3.7.

∆y = λc
4θa

= λc
2(Np − 1)∆θ (3.7)

3.2.4 Matched Filter Algorithm
Matched filter is a time-reversed complex-conjugate form of the received signal
on itself. Considering an isotropic point scatterer which will have a constant
amplitude. Therefore A(fk, τn) can be considered to have a constant value. The
matched-filter denoted by I(r), at location r is given by Equation 3.8.

I(r) = 1
NpK

Np∑
n=1

K∑
k=1

S(fk, τn)exp
(

+j4πfk∆R(τn)
c

)
(3.8)

Equation 3.8 is applied for each pixel to form a reconstructed SAR image.
Application of Equation 3.8 requires computation of differential range, ∆R(τn)
for all pixels for every pulse. In order to reconstruct a two dimensional SAR
image of size N×N , the matched filer algorithm has a computational complexity
of O(N4).

3.2.5 Backprojection Algorithm
The matched filter response as given by Equation 3.8 can be used to compute
the target response at a discrete range bin, m. Equation 3.8 forms the basis for
the derivation of the backprojection algorithm. The backprojection algorithm is
described in many papers and textbooks [44, 78, 33].

The range profile at range bin m for a pulse received at slow time τn is given
by Equation 3.9.

s(m, τn) =
K∑
k=1

S(fk, τn)exp
(

+j4πfk∆R(τn)
c

)
(3.9)

In order to compute the contribution to a pixel at location r for a given pulse
n, ∆R(τn) is calculated and used to compute interpolated value of s(m, τn).
This interpolated value sinter(r, τn) is then obtained for every pulse and summed
up to reconstruct an image I(r) as given by Equation 3.10.

I(r) =
Np∑
n=1

sinter(r, τn) (3.10)

The output of backprojection is a complex-valued image of dimension Nx×Ny.
To form the output image, a contribution from each pulse is integrated into each
pixel. Thus, the computational complexity for backprojection is O(Np ·Nx ·Ny).
For the nominal case where the number of pulses and pixels-per-side of the formed



image are comparable (e.g., N), the computational complexity of backprojection
is O(N3). To date several variants of backprojection algorithm have been
implemented with differences in computational complexity and image quality.

Here, we briefly described two implementations of SAR image formation,
however any novel implementation can be used to reconstructed the SAR output
image. Figure 3.1 shows the input targets in SAR imaging scene and backpro-
jection reconstruction for spotlight mode. Using the input generator for this
problem targets are injected in the range and cross-range after as shown in
Figure 3.1a. Using the parameters as per input specification, the signal from the
targets is constructed. With the application of suitable SAR image formation
algorithm, the target signal is used to reconstruct image of the scene. Figure
3.1b shows the reconstruction of the scene using the backprojection algorithm.
Here, Figures 3.1a and 3.1b are images that are cropped out of the entire SAR
imaging scene.

(a) (b)

Figure 3.1: SAR input and output images: (a) Input targets (b) Backprojection
reconstruction.



3.3 Evaluation
3.3.1 Correctness
Correctness can be measured by comparison of reconstructed SAR output image/s
to that with the input images that were used to construct the target signal.
It is essential for the reconstructed image to detect all the targets that were
injected as per input and that lie inside the boundary of padding regions of
range and cross-range. In addition, a peak signal to noise ratio (PSNR) will
be computed between the input image and the SAR reconstructed image. The
PSNR values for the output images will be used as a metric to evaluate any
novel implementation of image formation algorithm.

3.3.2 Performance and Power
The unit of work for relative comparisons is a pixel in the output image. There
are Nx ×Ny units of work.

Performance is evaluated with time per units of work.
Power is evaluated with Watts per unit of work.



Constraining Problem 4

Radio: Space-Time Adaptive Processing Signal
Formation

Nitin A. Gawande (PNNL), Joseph B. Manzano (PNNL), Nathan R. Tallent
(PNNL)

4.1 Justification
Compared to using a single sensor, signal detection using an array of sensors leads
to improvement in the Signal-to-Noise-Ratio (SNR) and has offered significant
benefits in applications such as radar, sonar, satellite communications, and seismic
systems [96]. Electromagnetic wave signals recorded by an array of antenna
receivers as voltage signals over spatial and temporal domain constitutes the radar
receiver signal data. Detecting a desired target-signal against background clutter
and interference is an important challenge because the spectral characteristics of
the interference and the target amplitude are often unknown. The background
clutter has a greater impact on target detection for moving platforms such
as advanced airborne surveillance radar systems [34]. Space-Time Adaptive
Processing (STAP) algorithms employ spatial and temporal adaptive processing
to suppress the interference in radar signal data and thus find targets which
otherwise may not be detected. The STAP procedure achieves this by computing
suitable weights that are applied to the radar signal to obtain desired target
signal. These weights are said to be computed ‘adaptively’ due to the fact they
reflect the actual clutter and interference in the environment.

The input to STAP is a three-dimensional radar data cube consisting of L
channels, or the phase centers on radar that are displaced along the velocity vector
of the platform; P pulses; and N samples per pulse. A pulse is one transmission
of radar energy. The N samples per pulse are commonly termed range cells or
range bins because they sample at range (or time) intervals. Because of the time
scales involved, the range dimension is referred to as fast-time and the pulse
dimension is referred to as slow-time. The L channels and P pulses add spatial
and temporal diversity, respectively, to the acquired data; these dimensions
correspond to the ‘space’ and ‘time’ in space-time adaptive processing. As a first
step of a typical STAP algorithm like the extended Doppler-factored algorithm
(EFA) [34], the pulse (time) domain is converted to Doppler spectrum domain.
This is achieved by applying a discrete Fourier transform (DFT) to the P pulses
for each range cell and channel pair resulting in K Doppler bins. We assume
that DFT is already applied to the data set and we have a data cube structure
as shown in Figure 4.1. A 2-D space-time snapshot corresponding to a particular
range cell is also shown in Figure 4.1. Optimum adaptive weights are desired
such that their application to the received signal vector enhances the signal to
noise ratio.
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Figure 4.1: Data cube from a single coherent processing Interval (CPI)

The several STAP algorithms approach the problem in a different ways and
have different levels of computational complexities. The key output requirement
is an estimate of weights that obtains an output signal with desired characteristics.
The real-time application of STAP brings performance constraints. Airborne
platforms have power constraints. We therefore describe weights estimation as
one of the most constraining problems in the STAP procedure.

Statistical STAP techniques use the interference covariance matrix to obtain
adaptive weights [114]. Training data samples from range bins are used to
compute the covariance matrix. These training data samples are chosen such
that they are representative of the stationary clutter present in the cell under
test. The adaptive weights are computed for a particular range cell and Doppler
bin using statistics of the space-time snapshot vector consisting of data samples
from the L array channels and Tdof adjacent Doppler bins. Here, Tdof is the
temporal degree-of-freedom in a given STAP procedure. This requires composing
LTdof × LTdof-sized interference covariance matrices and applying subsequent
operations to these matrices to get weights. The resulting weights are applied to
the target steering vector using inner-product to obtain the desired signal. A
target steering vector here is defined by its look-spatial-angle and look-Doppler-
frequency in space and time, respectively. Therefore, steering vector represents
a set of phase delays in space and time.



Most STAP algorithms perform the following steps (cf. [116]):

1. Starting with the data cube, identify the cell under test (corresponding
to data vector s of length LTdof and form the target steering vector v for
every Doppler bin of interest.

2. Select NT representative training data from range bins on both sides of
the cell under test keeping the guard cells.

3. Compose the estimate of interference covariance matrix R̃ using the training
data for methods that require use of covariance matrix.

4. Calculate the weight vector w and apply the weight vector to test cell data
to obtain a test statistics, Λ ∝ wHv. Here, wH represents the Hermetian
transpose of weight vector w. For STAP techniques using covariance matrix
inverse, the weight vector is computed as w ∝ R̃−1v.

5. Compare the test statistic Λ to a threshold value λ corresponding to a
specified probability of false alarm and declare target presence when the
test statistic exceeds the threshold.

4.2 Description
The input to STAP consists of a data cube with complex number entries cor-
responding to data of a coherent processing interval (CPI). A data cube is of
size equal to the number of channels L times the number of Doppler bins K
times the number of range bins N . The solution to the STAP constraining
problem of weights estimation can be obtained using different methods that
can make use one or more algorithms. A critical challenge in STAP procedure
is to address the heterogeneous and non-Gaussian interference encountered in
radar data. Therefore it is important to evaluate different solutions to STAP
weights-estimation while processing both homogeneous and non-homogeneous
interference problems that are encountered in real STAP applications. This
constraining problem of STAP weights-estimation uses two sets of data, one
with homogeneous and another with heterogeneous radar data. The output is
an interference suppressed signal. Since there are D steering vectors in a given
STAP problem, the output signal vector will have N × L×D elements.

4.2.1 Input
The parameters for computation of STAP output signal are given in Table
4.1. The input consist of a STAP data cube with complex number entries,
complex steering vector elements corresponding to data of a coherent processing
interval (CPI). The data cube is of size equal to N ×K × L complex elements
corresponding to the number of channels L, number of Doppler bins K, and
number of range bins N . The temporal degrees of freedom Tdof is provided. The



Table 4.1: STAP inner-product with data extraction parameters.

Parameter Variable (Dimension)
Spatial channels/elements L

Doppler bins K
Range bins N

Temporal degrees of freedom Tdof
Data cube (complex valued) (N ×K × L)

complex steering vector elements v has D complex vectors, each of size equal to
LTdof.

The input data set is provided for a simulated monostatic sidelooking radar
on a moving or stationary platform at a given height and velocity. The simulated
data uses specified spacing for antennas with uniform transmit pattern at a
given carrier frequency and pulse repetition frequency (PRF). The mainbeam
azimuth is centered at 0◦. Uniformly distributed clutter and a jammer location is
provided between azimuth −π/2 to +π/2. A homogeneous and non-homogeneous
clutter-to-noise ratio (CNR) per pulse, per channel is provided while a variable
jammer to noise ratio at different jammer location/s is used. At least 2 targets
with locations centered around 0◦ azimuth and given Doppler frequencies with
variable signal-to-noise-ratio form the input data. In order to validate the
mathematical robustness of a given STAP algorithm used for weights estimation
and compute the output signal, suitable metric is used.

4.2.2 Output
The output signal vector has N×L×D elements. The output signal is computed
via estimates of adaptive weighting elements. The complex array of weighting
vector elements w has N×K×D complex vectors corresponding to the number of
range binsN , number of Doppler binsK, and number of steering vectors,D. Each
complex element of the weighting vector is of size equal to LTdof corresponding
to the number of channels L and the temporal degree of freedom Tdof. The
scalar output signal y is obtained by performing inner-product computations
on the snapshot vector with the weighting vector array w. The complex output
signal y is computed over N ×K ×D elements as follows:

y(n, k, d) = γ(n, k, d)〈w(n, k, d), s(n, k)〉 (4.1)

where d = 1 . . . D are indices to steering vectors. The scalar weights array
multiplier γ represents a scalar multiplier. Thq quality of solution is equaluated
using the output signal to noise ratio (SNR) or signal to interferrence plus noise
ratio (SINR) as the case may be.

The output SINR is computed as per Equation 4.2. The input SINR is equal



to the SINR at a given spatial-temporal element as per given radar input data.

SINRout =
E
[
wHttHw

]
E
[
wHsH0sHH0

w
] (4.2)

where E[·] denotes the expectation operator and E[sH0sHH0
] is the interference

covariance matrix. Vectors s and t are the data-snapshot and target-snapshot
vectors, respectively. The suffix H0 represent the condition indicating target
absence.

4.3 Evaluation
4.3.1 Correctness
The computations are expected to follow the IEEE standard for floating-point
arithmetic (IEEE 754-2008) on a standard x86 system. The SINR metric is
averaged over a large number of Monte Carlo trials using the input data. A
given STAP algorithm will make use of certain total number of spatio-temporal
degrees of freedom and a number of snapshots from the range bin which will
also affect the performance. Therefore these two performance metrics will be
compared based on identical numbers for spatio-temporal degrees of freedom
and number of snapshots used in different STAP solutions.

4.3.2 Performance and Power
The unit of work is an element in the weighting vector. Consequently, there are
N ×K ×D units of work; corresponding to number of range bins N , number of
Doppler bins K, and number of steering vectors D.

Performance is evaluated with time per units of work.
Power is evaluated with Watts per unit of work.



Constraining Problem 5

Radio: Space-Time Adaptive Processing Target
Detection

Nitin A. Gawande (PNNL), Joseph B. Manzano (PNNL), Nathan R. Tallent
(PNNL)

5.1 Justification
Compared to using a single sensor, signal detection using an array of sensors leads
to improvement in the Signal-to-Noise-Ratio (SNR) and has offered significant
benefits in applications such as radar, sonar, satellite communications, and seismic
systems [96]. Electromagnetic wave signals recorded by an array of antenna
receivers as voltage signals over spatial and temporal domain constitutes the radar
receiver signal data. Detecting a desired target-signal against background clutter
and interference is an important challenge because the spectral characteristics of
the interference and the target amplitude are often unknown. The background
clutter has a greater impact on target detection for moving platforms such
as advanced airborne surveillance radar systems [34]. Space-Time Adaptive
Processing (STAP) algorithms employ spatial and temporal adaptive processing
to suppress the interference in radar signal data and thus find targets which
otherwise may not be detected. The STAP procedure achieves this by computing
suitable weights that are applied to the radar signal to obtain desired target
signal. These weights are said to be computed ‘adaptively’ due to the fact they
reflect the actual clutter and interference in the environment.

The input to STAP is a three-dimensional radar data cube consisting of L
channels, or the phase centers on radar that are displaced along the velocity vector
of the platform; P pulses; and N samples per pulse. A pulse is one transmission
of radar energy. The N samples per pulse are commonly termed range cells or
range bins because they sample at range (or time) intervals. Because of the time
scales involved, the range dimension is referred to as fast-time and the pulse
dimension is referred to as slow-time. The L channels and P pulses add spatial
and temporal diversity, respectively, to the acquired data; these dimensions
correspond to the ‘space’ and ‘time’ in space-time adaptive processing. As a first
step of a typical STAP algorithm like the extended Doppler-factored algorithm
(EFA) [34], the pulse (time) domain is converted to Doppler spectrum domain.
This is achieved by applying a discrete Fourier transform (DFT) to the P pulses
for each range cell and channel pair resulting in K Doppler bins. We assume
that DFT is already applied to the data set and we have a data cube structure
as shown in Figure 5.1. A 2-D space-time snapshot corresponding to a particular
range cell is also shown in Figure 5.1. Optimum adaptive weights are desired
such that their application to the received signal vector enhances the signal to
noise ratio.
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Figure 5.1: Data cube from a single coherent processing Interval (CPI)

The several STAP algorithms approach the problem in a different ways and
have different levels of computational complexities. The key output requirement
is an estimate of weights that obtains an output signal with desired characteristics.
The real-time application of STAP brings performance constraints. Airborne
platforms have power constraints. We therefore describe weights estimation as
one of the most constraining problems in the STAP procedure.

Statistical STAP techniques use the interference covariance matrix to obtain
adaptive weights [114]. Training data samples from range bins are used to
compute the covariance matrix. These training data samples are chosen such
that they are representative of the stationary clutter present in the cell under
test. The adaptive weights are computed for a particular range cell and Doppler
bin using statistics of the space-time snapshot vector consisting of data samples
from the L array channels and Tdof adjacent Doppler bins. Here, Tdof is the
temporal degree-of-freedom in a given STAP procedure. This requires composing
LTdof × LTdof-sized interference covariance matrices and applying subsequent
operations to these matrices to get weights. The resulting weights are applied to
the target steering vector using inner-product to obtain the desired signal. A
target steering vector here is defined by its look-spatial-angle and look-Doppler-
frequency in space and time, respectively. Therefore, steering vector represents
a set of phase delays in space and time.



Most STAP algorithms perform the following steps (cf. [116]):

1. Starting with the data cube, identify the cell under test (corresponding
to data vector s of length LTdof and form the target steering vector v for
every Doppler bin of interest.

2. Select NT representative training data from range bins on both sides of
the cell under test keeping the guard cells.

3. Compose the estimate of interference covariance matrix R̃ using the training
data for methods that require use of covariance matrix.

4. Calculate the weight vector w and apply the weight vector to test cell data
to obtain a test statistics, Λ ∝ wHv. Here, wH represents the Hermetian
transpose of weight vector w. For STAP techniques using covariance matrix
inverse, the weight vector is computed as w ∝ R̃−1v.

5. Compare the test statistic Λ to a threshold value λ corresponding to a
specified probability of false alarm and declare target presence when the
test statistic exceeds the threshold.

The computational load in STAP is a function of the spatial-temporal degree
of freedom [116]. Moreover, the sample covariance matrix based methods require
adequate training samples over range bins to compute the covariance matrix for
a given spatial-temporal degree of freedom. The large training data requirement
also increases the computational load for STAP. The fully adaptive covariance
matrix based methods perform poorly on radar data with heterogeneous and
non-Gaussian interference. In order to overcome the two-fold problem of large
training data support requirement and heterogeneity of training data, partially
adaptive methods requiring a reduced spatial-temporal degree of freedom were de-
veloped [116]. Some of these algorithms include the joint domain localized (JDL)
processing algorithm [113], the parametric adaptive matched filter (PAMF) [98],
the multistage Weiner filter (MWF) [43], extended-factored STAP [114], nor-
malized fractionally-lower order moment (NFLOM) [126], Bayesian covariance
estimation methods [45], the low-rank clutter covariance matrix (CCM) meth-
ods [41]. Some methods follow the deterministic least-square approach like the
direct data domain (D3) method [101] which does not require statistical training.
Another approach is to make use of hybrid stap procedure [1] that uses more
than one method including some of the above listed methods and address the
problem of heterogeneous and non-Gaussian interference.

5.2 Description
The input to STAP consists of a data cube with complex number entries cor-
responding to data of a coherent processing interval (CPI). A data cube is of
size equal to the number of channels L times the number of Doppler bins K
times the number of range bins N . The solution to the STAP constraining



problem of weights estimation can be obtained using different methods that
can make use one or more algorithms. A critical challenge in STAP procedure
is to address the heterogeneous and non-Gaussian interference encountered in
radar data. Therefore it is important to evaluate different solutions to STAP
weights-estimation while processing both homogeneous and non-homogeneous
interference problems that are encountered in real STAP applications. This
constraining problem of STAP weights-estimation uses two sets of data, one
with homogeneous and another with heterogeneous radar data. The output is
an interference suppressed signal. Since there are D steering vectors in a given
STAP problem, the output signal vector will have N × L×D elements.

5.2.1 Input

Table 5.1: STAP inner-product with data extraction parameters.

Parameter Variable (Dimension)
Spatial channels/elements L

Doppler bins K
Range bins N

Temporal degrees of freedom Tdof
Data cube (complex valued) (N ×K × L)

The parameters for computation of STAP output signal are given in Table
5.1. The input consist of a STAP data cube with complex number entries,
complex steering vector elements corresponding to data of a coherent processing
interval (CPI). The data cube is of size equal to N ×K × L complex elements
corresponding to the number of channels L, number of Doppler bins K, and
number of range bins N . The temporal degrees of freedom Tdof is provided. The
complex steering vector elements v has D complex vectors, each of size equal to
LTdof.

The input data set is provided for a simulated monostatic sidelooking radar
on a moving or stationary platform at a given height and velocity. The simulated
data uses specified spacing for antennas with uniform transmit pattern at a given
carrier frequency and pulse repetition frequency (PRF). The mainbeam azimuth
is centered at 0◦. Uniformly distributed clutter and a jammer location is provided
between azimuth −π/2 to +π/2. A homogeneous and non-homogeneous clutter-
to-noise ratio (CNR) per pulse, per channel is provided while a variable jammer
to noise ratio at different jammer location/s is used. At least 2 targets with
locations centered around 0◦ azimuth and given Doppler frequencies with variable
signal-to-noise-ratio form the input data. In order to validate the mathematical
robustness of a given STAP algorithm used for weights estimation and compute
the output signal, suitable metrics are used. Probability of detection (PD) is
one such metric and is calculated using another parameter, probability of false
alarm (PFA). The probability of false alarm is provided for evaluation purpose.



5.2.2 Output
The output signal vector has N×L×D elements. The output signal is computed
via estimates of adaptive weighting elements. The complex array of weighting
vector elements w has N×K×D complex vectors corresponding to the number of
range binsN , number of Doppler binsK, and number of steering vectors,D. Each
complex element of the weighting vector is of size equal to LTdof corresponding
to the number of channels L and the temporal degree of freedom Tdof. The
scalar output signal y is obtained by performing inner-product computations
on the snapshot vector with the weighting vector array w. The complex output
signal y is computed over N ×K ×D elements as follows:

y(n, k, d) = γ(n, k, d)〈w(n, k, d), s(n, k)〉 (5.1)

where d = 1 . . . D are indices to steering vectors. The scalar weights array
multiplier γ represents a scalar multiplier.

Using the output signal y, a test statistic Λ(y) is obtained. This value of Λ is
compared with a threshold value λ to detect presence of target. This comparison
is equivalent to comparing the output signal power to a value equal to fixed
threshold times a multiplier representative of noise power. The mathematical
robustness of various solutions to STAP problems is evaluated here using two
performance metrics, probability of detection (PD) and improvement factor (IF).

The probability of detection PD performance is computed as a function of
signal-to-noise ratio (SNR) for a given probability of false alarm PFA. The
expressions for PFA and PD are given by Equations 5.2 and 5.3, respectively [75].

PFA = exp
(
−β2

T

2

)
(5.2)

PD =
∞∫

βT

uexp
(
−
(
u2 + α2)

2

)
I0 (αu) du (5.3)

where βT is a normalized detection threshold, I0(·) is the modified zero-order
Bessel function of the first kind, and α is equal to the square-root of the peak
signal-to-interference-plus-noise ratio (SINR). The computation of PD using the
above equation for both Gaussian and non-Gaussian clutter scenarios can be
mathematically difficult. Therefore finite sum expression corresponding to a
specific STAP algorithm is used for computation of PD. These computations are
performed over a large number of simulations using Monte Carlo Technique [77].

Improvement factor (IF) is a ratio of output SINR to input SINR (Equation
5.4). The improvement factor is computed over given space-time elements. The
output SINR is computed as per Equation 5.5. The input SINR is equal to the
SINR at a given spatial-temporal element as per given radar input data.

IF = SINRout

SINRin
(5.4)

SINRout =
E
[
wHttHw

]
E
[
wHsH0sHH0

w
] (5.5)



where E[·] denotes the expectation operator and E[sH0sHH0
] is the interference

covariance matrix. Vectors s and t are the data-snapshot and target-snapshot
vectors, respectively. The suffix H0 represent the condition indicating target
absence.

5.3 Evaluation
5.3.1 Correctness
The computations are expected to follow the IEEE standard for floating-point
arithmetic (IEEE 754-2008) on a standard x86 system. The two metrics proba-
bility of detection (PD) and improvement factor (IF) are averaged over a large
number of Monte Carlo trials using the input data. A given STAP algorithm
will make use of certain total number of spatio-temporal degrees of freedom and
a number of snapshots from the range bin which will also affect the performance.
Therefore these two performance metrics will be compared based on identical
numbers for spatio-temporal degrees of freedom and number of snapshots used
in different STAP solutions.

5.3.2 Performance and Power
The unit of work is an element in the weighting vector. Consequently, there are
N ×K ×D units of work; corresponding to number of range bins N , number of
Doppler bins K, and number of steering vectors D.

Performance is evaluated with time per units of work.
Power is evaluated with Watts per unit of work.



Constraining Problem 6

Image: Image Registration

Nitin A. Gawande (PNNL), Nathan R. Tallent (PNNL), Joseph B. Manzano
(PNNL)

6.1 Justification
Image registration is a fundamental task used in image processing. Registration is
the process of matching or overlaying two or more images taken at different times,
from different sensors, or from different viewpoints [17]. Image registration is
used in important applications of Wide Area Motion Imaging (WAMI). Optical
moving target indication (MTI) is one of the critical operations of WAMI
surveillance systems such as ARGUS [63]. MTI is expected to execute over the
entire field of view at a minimum of 2 Hz, but higher frequencies are often needed.
Image registration is computationally very intensive. The need to process large
images at a high frequency makes image-registration a constraining problem
for MTI. Typically, an MTI pipeline uses frame-to-frame registration followed
by change detection. Other systems of importance where image registration
is a significant component include monitoring global land use using satellite
images, matching stereo images for autonomous airborne vehicle navigation, and
medical imaging [17]. Image registration is also critical to other image processing
applications such as image mosaicking, compression, and video processing. Image
processing rates for such applications vary between 5 to 100 Hz along with
varying input image sizes. Such requirements make image registration one of
the constraining problems in image processing.

6.2 Description
Image registration can be defined as a mapping between two images both
spatially and with respect to intensity [17]. Given an input image I which need
to registered on a template image T denoted by 2D arrays I(x, y) and T(x, y),
respectively. Then the mapping between images is given by Equation 6.1.

I(x, y) = g (T (f(x, y)
))

(6.1)

where, f is a 2D spatial-coordinate transformation which maps two spatial
coordinates, x and y, to new coordinates x′ and y′ such that (x′, y′) = f (x, y).
g is a 1D intensity transformation. Thus the image registration problem is
to find optimal spatial and intensity transformations so that the images are
matched. The change in intensity may arise due to change in sensors or by
change in reflectance seen by sensor, or due to differences in the imaging scene.
Spatial distortions between images arise due to differences in acquisition and
scene characteristics which affect acquisition.
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There are several methods to carry out the image registration procedure as
given by Equation 6.1. These methods are typically categorized as intensity based,
feature based, or hybrid [17]. Mendoza-Schrock et al. (2009) [76] evaluated
several image-to-image registration methods with respect to the accuracy and
robustness and more information of these methods can be found else where [17].
A novel solution to this constraining problem can include intensity-based methods
(including correlation-based) and any feature-based methods that already include
information on feature templates and do not require additional input information
from the user.

6.2.1 Input
The input generator computer program generates a sequence of variable L
number of grayscale images using one input image. A user has the choice to pick
from different images from a set of images and also choose different image size.
The sequence of L images is obtained for a chosen input template image after
applying a series of image transformations such as translation in two directions,
rotation, shear in two directions, and scaling in two directions. During evaluation
of image registration, manual selection of domain for computation of evaluation
metrics is a carried out [46], which is a cumbersome task. The images provided
in this input image data set are padded at boundary uniformly with low intensity
value. The use of padding minimizes the error which otherwise is introduced
significantly at the edges, making evaluation of image registration very difficult.
Padding of input images makes it possible to automate the computation of
evaluation metrics for registered images. We provide three different image sizes
with 256 × 256 pixels, 512 × 512 pixels, and 1024 × 1024 pixels corresponding
to small, medium, and large sizes, respectively.

The input set of images contain following images in RYB color scheme
for which information is included in the input generator numerical computer
program.

• Geometry-01: This is an image with simple geometry of two squares
rendered uniformly.

• Geometry-02: This is an image with two squares rendered uniformly
overlaid on a triangle shaped line object and a circle represented as line
objects.

• Geometry-02: This is an image with two squares rendered uniformly
overlaid on a triangle shaped line object and a uniformly rendered circle
as another object.

• Chem-img-PNNL-01: This is an image of nano-particles obtained using high
resolution Transmission Electron Microscopy (TEM) with ultrasensitive
nanoscopy. This image was obtained through the PictureThis, which is an
online collection of photos, graphics, videos, and related image files at the
Pacific Northwest National Laboratory (http://picturethis.pnl.gov/).

http://picturethis.pnl.gov/


• Lena-image: An image of human face.

• Airplane: Photograph of an airplane obtained from PictureThis.

• Richland-aerial-01: Aerial Photograph of mixed urban, grassland, and
water-body landscape obtained via open source.

• Columbia-valley-landscape: Photograph of mixed grassland and water-body
landscape from PictureThis.

The input data are sequence of L images generated with the use of input
generator while using a single template image of either small, medium, or large
size. With the choice of several template images with three different sizes an
large number of image sequences are used for evaluation of a novel solution to
this constraining problem.

6.2.2 Output
The output is a series of image registrations, where image i (i = 1 . . . L) is
registered on the input template image (in grayscale). The sequence of image
registrations is checked against the original template image, which is used in
the input generator. A comparison of mean square error (MSE) values is used
to compare different solutions to this constraining problem. Any method is
considered acceptable when the MSE values is less than or equal to the threshold
value provided for a given input image.

6.3 Evaluation
6.3.1 Correctness
The input image I is registered as image R on the template image T . The Mean
Square Error (MSE) between the template image, T and the registered image R
is given by Equation 6.2.

MSE =


M∑
i=1

N∑
j=1

[T(i, j)−R(i, j)]2

M ×N

 (6.2)

where, R(i, j) and F(i, j) are the image pixel values of the reference (golden
standard) image and the fused image, respectively. (M ×N) is the image size
corresponding to number of rows M and number of columns N of pixel.

An average of MSE is computed for total of L registration sequences per-
formed. The peak signal to noise ratio is computed for an average MSE values
as per Equation 6.3.

PSNR =
{

10·log10(I2
max/MSE)

log(10) , if MSE > 0
120, if MSE = 0

(6.3)



In Equation 6.3, Imax is the maximum pixel value for grayscale images.

6.3.2 Performance and Power
Execution time for the entire sequence of image-to-image registrations. This
number will be normalized for total number of registrations performed and by
the total number of pixels in each image.

The average power consumed the entire sequence of image-to-image registra-
tions. The power will be normalized for total number of registrations performed
and by the total number of pixels in each image. We also use peak power and
standard deviation.

6.4 Appendix
Mendoza-Schrock et al. (2009) [76] evaluated several image-to-image registration
methods with respect to the accuracy and robustness. This study showed that
the Lucas-Kanade method [71] outperformed other algorithms. Lucas-Kanade
works well because it is designed to optimize the RMSE. However, other variants
of Lucas-Kanade method and methods derived from this method have been
shown to perform faster [83], [91]. Here, we describe in brief the Lucas-Kanade
method.

Lucas-Kanade is an intensity based image-registration method (Lucas and
Kanade, 1981). It is a gradient descent algorithm that minimizes the sum
of square of errors between two images. Minimizing this sum is a non-linear
optimization problem. The Lucas-Kanade method is essentially Gauss-Newton
gradient descent non-linear optimization algorithm. This algorithm uses images
in grayscale format. Gradient descent algorithms such as the Lucas-Kanade
method work by minimizing the square of errors (Equation 6.2) between an
image template T and input image I that is warped into the coordinate frame
of the template. The Lucas-Kanade algorithm uses an initial estimate of warp
parameter p and then iteratively solves until ∆p becomes sufficiently small. In
particular, the following expression is minimized:

E(x, y) =
∑
Nx

∑
Ny

[I(W ( (x, y); p) )−T (x, y)] (6.4)

where, W ((x, y); p), denotes set of warps; p = 〈p1, . . . , pn〉, is a vector of warp
parameters; and Nx and Ny are the number of pixels along the two coordinates.

Baker and Matthews [7] describe different gradient descent algorithms. These
techniques broadly fall into two categories as either additive or compositional,
and as forwards or inverse. Table 6.1 shows four categories of implementations
based on the above two groups and their mathematical complexities. One other
difference in the implementations of gradient descent algorithms is the use of
different type of approximations. Tables 6.2 and 6.3 show the convergence
properties and the complexities of different implementations.



Table 6.1: Various gradient descent image alignment algorithms showing their
complexity and application, source [7].

Algorithm Example Complexity Application to
Forward Addi-
tive

Lucas-Kanade
(1981)

O(n2N + n3) Any

Forward Compo-
sitional

Shum-Szeliski
(2000)

O(n2N + n3) Any semi-group

Inverse Additive Hagen-
Belhumeur
(1998)

O(nN + n3) Simple linear 2D

Inverse Composi-
tional

Baker-Matthews
(2001)

O(nN + nK + k3) Any group

Table 6.2: Convergence rate and convergence frequency of the six gradient
descent approximations [7].

Algorithm Convergence rate Convergence frequency
Gauss-Newton Fast High
Newton Medium Medium
Steepest Descent Slow Low
Gauss-Newton Diagonal
Hessian

Slow Low

Newton Diagonal Hessian Slow Low
Levenberg-Marquardt Fast High

Table 6.3: Algorithm complexity with inverse and forward composition and the
implementation efficiency [7].

Algorithm Complexity with in-
verse composition

Complexity with for-
ward composition

Gauss-Newton O(nN + n3) Efficient O(n2N + n3)
Newton O(n2N + n3) O(n2N + n3)
Steepest Descent O(nN + n2) Efficient O(nN + n2) Efficient
Gauss-Newton Diagonal
Hessian

O(nN + n2) Efficient O(nN + n2) Efficient

Newton Diagonal Hes-
sian

O(nN + n2) Efficient O(nN + n2) Efficient

Levenberg-Marquardt O(nN + n3) Efficient O(n2N + n3)



Constraining Problem 7

Image: Multisensor Image Fusion

Nitin A. Gawande (PNNL), Joseph B. Manzano (PNNL), Nathan R. Tallent
(PNNL)

7.1 Justification
Multisensor fusion refers to combining different sources of sensory informa-
tion [127]. A fused image may contain a richer or more accurate description of a
scene in comparison to any individual source images [127]. As a result, fused
images may enable detection of more targets or increased accuracy in detecting
targets. The use of multisensor image fusion in areas of military and defense,
medical imaging, satellite imagery, geosciences, and a number of industrial appli-
cations is well documented [13], [87]. These methods find wide use in military
and security related applications such as night-vision, synthetic aperture radar
(SAR), satellite imagery, and screening check-points [131], [64], [127], [12].

When sensors measure the same physical phenomenon, then fusion is possible.
However, fusion may occur at different levels. If sensor data is noncommensurate,
then these data must be fused at a higher or feature level [47]. Signal-level image
fusion refers to the process of combining multiple input image signals into a
single fused image output [86].

This problem focuses on pixel-level image fusion, the lowest level of image
fusion for multisensor images. Pixel-level fusion helps to improve the performance
of image processing tasks such as segmentation and feature extraction [65]. Pixel-
level image fusion require that [130]: (1) the fusion process preserve all relevant
information from the input images into the fused image; and (2) the fusion
process should not introduce any artifacts or inconsistencies.

Multisensor image fusion implementations have several challenges. Although
pixel-level image fusion algorithms are well known, challenges remain with respect
to exploiting sensor modalities, robustness to environmental and operational
conditions and offering performance benefit [104]. A critical performance issue
is system latency. A sophisticated fusion algorithm runs the risk of not offering
benefits if the latency is too high for real-time implementation [104]. The limits
on the power requirements of computing devices used for image fusion in real-time
applications add another dimension to this challenge. As a result, multisensor
image fusion is a constraining problem in several DoD applications.

7.2 Description
For informational purposes, this section first gives an overview of different image
fusion methods. We then describe input and output specifications for this
constraining problem.
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There are several methods to perform image fusion. Image fusion algorithm-
s/methods can be classified broadly in three categories: (1) Weighted averaging;
(2) Multiscale Methods; and (3) Other methods.

Weighted Averaging
This is the simplest image fusion method based on linear weighted average

of pixels of source images [104]. This method is easy to implement and fast to
execute. However, a fused image obtained through this method has low contrast.
This leads to suppression of important image features in the fused image.

Multiscale Methods
Multiscale image fusion methods are further categorized into (a) Pyramid

methods and (b)Discrete wavelet transform (DWT) based methods;
Pyramid image fusion methods are multiscale decomposition methods where

a pyramid structure can be used to represent collection of images at differ-
ent scales [127]. Pyramid fusion methods may differ in implementation and
categorized as under:

• Laplacian pyramid

• Ratio of low-pass pyramid and contrast pyramid

• Gradient pyramid

• Morphological pyramid

Burt and Adelson [19] showed implementation of the Laplacian pyramid
method. In a Laplacian pyramid, each level of pyramid is recursively constructed
from its lower level following a series of steps.

The DWT based multiscale methods differ from other pyramid methods of
the first category mentioned above. In DWT based pyramid methods, successive
layers of the pyramid include only additional details that are not available at
preceding levels [73].

DWT based byramid methods are further categorized as under:

• Only DWT based method

• DWT with principal component analysis (PCA) and morphological pro-
cessing

• Hybrid methods using combined pyramid and DWT methods

• Other variants of DWT method

Other Methods
Image fusion methods not included in above two categories can be grouped

separately. Multisensor image fusion methods based on compressive sensing [112]
and methods using neural network [16] [66] algorithm can be grouped in this
category. Compressive sensing offers advantage such that a fused image can be
obtained without having to acquire the original input images [112]. This method
is implemented using following procedure [112]:



1. Take the compressive measurements, YD of input images A and B (D =
{A,B}) using a suitable sampling pattern.

2. Calculate vector of fused measurements, YM with measurements M =
ΨD(YD) for D = {A,B}; Ψ is a function used for compressive sensing of
input images.

3. Reconstruct the fused image F from the composite measurements YF via
total variation minimization method [20].

7.2.1 Input
A prerequisite for successful image fusion is that multisensor images are correctly
aligned on pixel-by-pixel basis [64]. Registration of images prior to fusion
is very important and we consider that the input images used for fusion are
already registered. Any image resampling which is often required prior to image
registration is also applied to input images. As the main focus of this constraining
problem is the basic image fusion process, only grayscale images are used. Four
sets of grayscale images at three different resolutions are used as input. Each
image has M number of pixel rows and N pixel columns. These input images
are as follows:

1. One visible and one single band infrared image as input. These images are
from a scenery in grassland environment with 2 or more humans in the
background.

2. One visible and two infrared images from two different bands. These images
are from a scenery in grassland environment with 2 or more humans in the
background.

3. Two multi-focued visible images from a scenery in urban environment.

4. One visible, one single band infrared, and one submillimeter (SMM) image
of a human with hidden metal object detected in SMM image.

7.2.2 Output
Any of the above mentioned image fusion schemes or any other alternative
scheme is used to obtain a fused image as per input. A generalized image fusion
procedure is shown in Figure 7.1. The output is one fused image for one set of
input images. The fused image will have a resolution equal to the size of input
images.

An implementation of image fusion algorithm that introduces noise in the
fused image due to inherent characteristics of the algorithm and that the fused
image requires an use of enhancement procedure for the evaluation of fused
image, then the enhancement algorithm will be treated as a part of image fusion
algorithm. The fused image obtained through the application of suitable image



Figure 7.1: A generalized representation of image fusion procedure.

fusion algorithm will be evaluated using fusion evaluation metrics described
below.

A large number of quantitative image fusion metrics are used in practice
to evaluate quality of fused image obtained through the use of image fusion
algorithms [12], [69], [129], [68]. Image fusion metrics broadly fall into two
categories, one that require a reference image and another that does not. For
metrics that require a reference image, the fusion metric is a measure of deviation
of fused image with respect to reference image.

The fused output image will be evaluated using some or all of the fusion met-
rics described here. An additional metric, complimentary to the ones mentioned
here will be included for any novel image fusion implementation that inherently
demand such requirement.

The absolute values of metrics used for evaluation of image fusion algorithms
are highly dependent on the input images that are fused. Therefore it is critical
to have a basis for comparison of novel image fusion implementations. An
absolute value of fusion metric using a reference implementation will be used
to normalize the fusion metric value obtained using any other implementation.
The quantitative metrics that will be used to evaluate any fusion method are
described here.

Fusion Metrics

1. Root mean square error (RMSE)
The RMSE between the reference image and fused image is given by
Equation 7.1.

RMSE =


M∑
i=1

N∑
j=1

[R(i, j)− F(i, j)]2

M ×N


1
2

(7.1)

where, IR(i,j) and IF(i,j) are the image pixel values of the reference (golden
standard) image and the fused image, respectively. (M ×N) is the image



size corresponding to number of rows M and number of columns N of
pixel.

2. Entropy (H) Entropy (H) is indicator of image complexity and thus a
measure of information contained in an image.

H = −
L−1∑
l=0

p(l) log2 p(l) (7.2)

where, p(l) is the probability of gray level which is computed using data of
image histogram, [0, L− 1] is the dynamic range of analyzed image. For a
8-bit single channel image L is equal to 256.

3. Spatial frequency (SF)
Zheng et al. [130] used this metric to measure the overall activity level of
an image I(i, j) as defined below:

SF =
√

(RF )2 + (CF )2 + (MDF )2 + (SDF )2 (7.3)

where, RF and CF are row frequency and column frequency respectively;
MDF and SDF are frequencies along the main diagonal and secondary
diagonal, respectively.

RF =

√√√√ 1
MN

M∑
i=1

N∑
j=2

[I (i, j)− I (i, j − 1)]2 (7.4)

CF =

√√√√ 1
MN

N∑
j=1

M∑
i=2

[I (i, j)− I (i− 1, j)]2 (7.5)

MDF =

√√√√wd
1

MN

M∑
i=2

N∑
j=2

[I (i, j)− I (i− 1, j − 1)]2 (7.6)

SDF =

√√√√wd
1

MN

N−1∑
j=1

M∑
i=2

[I (i, j)− I (i− 1, j + 1)]2 (7.7)

where, wd = 1/
√

2 is distance weight for diagonals. Equation 7.3 is used
to compute spatial frequency SFA, SFB, and SFF for input images A and
B, and fused image F, respectively. The reference SF (SFR) is computed
based on calculation of gradients along four directions. This gradient,
denoted as Grad(I(i, j)) is computed as per Equation 7.8.



GradD(I(i, j)) = max
{

abs
[
GradD(IA(i, j))

]
,abs

[
GradD(IB(i, j))

]}
,

for each of four directions, i.e., D = {H,V,MD,SD}
(7.8)

where, the superscript ‘D’ denotes one of four directions along image
row, column, main diagonal, and secondary diagonal. The gradient from
Equation 7.8 is substituted into Equations 7.4 through 7.7 to obtain four
reference frequency values. These four reference frequency values are used
to compute the reference spatial frequency SFR. Finally, the performance
metric for spatial frequency rSFe is computed using Equation 7.9.

rSFe = (SFF − SFR) /SFR (7.9)

Smaller the rSFe value, better is the fused image. An ideal fusion has
rSFe = 0; rSFe > 0 denotes an over-fused image with some distortion
or noise introduced; rSFe < 0 denotes an under-fused image with loss of
some meaningful information.

4. Gradient-based Fusion Metric
Xydeas and Petrovic [121] proposed this metric to evaluate the amount
of edge information transferred from input images to the fused image.
The methodology adopted in this metric can be applied to more than two
images. We consider two input images A and B resulting in a fused image
F. A Sobel edge operator is applied to obtain the edge strength g(n,m)
and orientation α(n,m) information for each pixel(i, j); 1 ≤ i ≤ M and
1 ≤ i ≤ N . For image A, these parameters are computed as follows:

gA (i, j) =
√
sxA (i, j)2 + syA (i, j)2 (7.10)

αA (i, j) = tan−1
(
syA (i, j)
sxA (i, j)

)
(7.11)

where sxA(i, j) and syA(i, j) are the output of the horizontal and vertical
Sobel template centered on pixel(i, j) and convolved with the corresponding
pixels of image A. The relative strength GAF(i, j) and AAF(i, j) of an
input image A with respect to fused image F are computed as follows:

GAF(i, j) =
{
gF(i,j)
gA(i,j) , ifgA > gF(i, j)
gF(i,j)
gA(i,j) , otherwise

(7.12)

∆AF(i, j) = 1− | αA(i, j)− αF(i, j) |
π/2 (7.13)



Above equations are used to derive the edge strength and orientation
preservation values

QAF
g (i, j) = Γg

1 + expκg(GAF(i,j)−σg) (7.14)

QAF
α (i, j) = Γα

1 + expκα(∆AF(i,j)−σα) (7.15)

Constants Γg, κg, σg, and Γα, κα, σα determine the exact shape of the
sigmoid functions used to form the edge strength and orientation values.
Edge information preservation values are then defined as follows:

QAF(i, j) = QAF
g (i, j)QAF

α (i, j) (7.16)

After computing QAF(i, j) and QBF(i, j) for (M ×N) size images A and
B, respectively, a normalized weight performance metric QAB/F

P of a given
fusion process P is obtained as follows:

Q
AB/F
P =

M∑
i=1

N∑
j=1

QAF(i, j)wA(i, j) +QBF(i, j)wB(i, j)

M∑
i=1

N∑
j=1

(wA(i, j) + wB(i, j))
(7.17)

where wA(i, j) = | gA(i, j) |L and wB(i, j) = | gB(i, j) |L are the weighting
coefficients and L is a constant. This performance metric is bound such
that 0 ≤ QAB/F

P (i, j) ≤ 1.

5. Similarity metric based on Universal Image Quality Index
Cvejic et al., [29] proposed a similarity metric where each window block
in spatial domain between input image and fused image is assigned a
weighting factor similarity to fused image. The impact of less similar block
in spatial domain is accordingly decreased. This metric is particularly
important in cases where the input images are distorted versions of the
ground-truth data; obtained by e.g. blurring, JPEG compression, noise
addition, etc. The similarity metric Qb is defined as per Equation 7.18.

Qb =
∑
w∈W

sim(A,B,F |w)Q(A,F |w) + (1− sim(A,B,F |w))Q(B,F |w)

(7.18)
where A and B are the input images, F is the fused image, w is the
analysis window block, and W is the family of all windows. The function
sim(A,B,F |w) is given by Equation 7.19.



sim(A,B,F |w) =


0, if σAF

σAF+σBF
< 0,

σAF
σAF+σBF

, if0 ≤ σAF
σAF+σBF

≤ 1,
1, if σAF

σAF+σBF
> 1.

(7.19)

where σAF and σBF are defined as follows:

σAF = 1
MN − 1

M∑
i=1

N∑
j=1

(A(i, j)− Ā)(F(i, j)− F̄) (7.20)

σBF = 1
MN − 1

M∑
i=1

N∑
j=1

(B(i, j)− B̄)(F(i, j)− F̄) (7.21)

where Ā, B̄, and F̄ are the average of image signals for images A, B, and
F, respectively.

6. Normalized Fusion Mutual Information (NFMI)
Mutual information metric is a quantitative measure of degree of depen-
dence of two images. Qu et al. [94] provided the expression to estimate
the joint information between two source images A(i, j) and B(i, j) and
the fused image F(i, j) which is based on computation of joint entropy and
marginal entropy of as under:

(FMI)AB
F = MI(A,F) +MI(B,F) (7.22)

MI(A,F) =
M∑
i=1

N∑
j=1

hAF(i, j) log2

(
hAF(i, j)

hA(i, j)hF(i, j)

)
(7.23)

MI(B,F) =
M∑
i=1

N∑
j=1

hBF(i, j) log2

(
hBF(i, j)

hB(i, j)hF(i, j)

)
(7.24)

where, hAF(i, j) is the normalized joint histogram of images A(i, j) and
F(i, j); hA(i, j), hB(i, j), and hF(i, j) are the normalized marginal his-
togram of images A, B, and F, respectively.
The fused mutual information (FMI) computed as per Equation 7.22 make
use of two joint entropies computed at different scales. We use normalized
fusion mutual information (NFMI) as suggested by Hossny et al. [49] as
per Equation 7.25.

(NFMI)AB
F = 2

[
MI(A,F)

H(A) +H(F) + MI(B,F)
H(B) +H(F)

]
(7.25)

where, MI(A,F) and MI(B,F) are defined as per Equations 7.23 and 7.24,



respectively; H(A), H(B), and H(F) are the marginal entropies of A, B,
and F, respectively.

7.3 Evaluation
7.3.1 Correctness
The computations are expected to follow the IEEE standard for floating-point
arithmetic (IEEE 754-2008) on a standard x86 system. Quantitative evaluation
of the quality of fused image using any image fusion algorithm will be done using
some or all of the quantitative evaluation metrics mentioned in previous section.

7.3.2 Performance and Power
The unit of work is one pixel in the fused image. Consequently, there are (M×N)
units of work; corresponding to number of rows M and number of columns N in
the fused image.

Performance is evaluated with time per units of work.
Power is evaluated with Watts per unit of work.

7.4 Appendix
An image fusion scheme based on discrete wavelet transform (DWT) utilizing
multi-level image decomposition is shown in Figure 7.2.

Figure 7.2: Discrete wavelet transform (DTW) image fusion scheme with multi-
level image decomposition.

A DWT based image fusion scheme is implementated as per steps mentioned
below:

1. A two dimensional discrete wavelet transform (DWT), f(x, y) is obtained
by applying DWT on an image over pixel rows and columns.

2. DWT coefficients are computed by convolving the image with low-pass
filter (hk) and high-pass filter (gk) and performing down sampling by 2
over each row and column. This processing generates four subbands, LL,



HL, LH, and HH obtained via combination of hk and gk. These subband
images contain the approximation coefficients convolved with low-pass
filter and/or high-pass filter.
Here, LL denotes the subband that contains the approximation coefficients
convolved with the low-pass filter hk; LH denotes the horizontal detail coef-
ficients from the original image; HL denotes the vertical detail coefficients
with respect to high frequency components in the rows and low frequency
in the columns; HH subband stores the diagonal detail information which
is related to sharp changes in the image.
In a multi-level decomposition scheme, subsequent decomposition is per-
formed only on the LL image.

3. A suitable fusion scheme is applied to the decompositions of two or more
input images generated over multiple levels, to obtain a fused-image-
decomposition. This is achieved by choosing an appropriate scheme to
combine the coefficients obtained from different input images.

4. Inverse DWT is applied to the fused-image-decomposition, to generate a
fused image.



Constraining Problem 8

Image: Face Detection

Nitin A. Gawande (PNNL), Joseph B. Manzano (PNNL), Nathan R. Tallent
(PNNL)

8.1 Justification
Face recognition from set of images or stream of video images is an important
procedure in biometric analytics and face recognition in particular. In the entire
process of face recognition, face/object detection is the first step. Next setup
is the extraction of features from detected facial objects. A suitable training
procedure is then employed using extracted features for classification of a large
number of images. Based on the classification of a large number of images,
face recognition on an unknown image is then performed. Face detection is
the first and critical step in the image recognition pipeline. Face detection
is often performed in real-time. However, the training procedure which uses
extracted features from images to perform classification, can be done offline.
Other important applications of face detection include video surveillance and
intelligent human computer interactions [53].

The face-detection throughput can vary with the pixel-size of input images,
complexity of detector (algorithm), and the computing hardware. While the
input image can be rescaled to a smaller size for faster processing however this
may conversely affect detection of face. There are a number of challenges to
face detection [123] such as; pose, which can be directly facing the camera or at
an angle; lighting and face background; presence or absence of additional facial
structural components like beards, mustaches, and wearable lenses; occlusion
due to surrounding objects or clothing.

With regards to implementation of face detection algorithms, there are two
main drawbacks [38]: (1) low processing throughput, and (2) lack of accurate
face detection performance. Video streaming requires a throughput of more than
25 to 30 frames per second [2], [79]. Each frame may consist of frames with
720×480 or more pixels. Face detection is required to be processed for such large
frame sizes at more than 30 frames per second with real time processing.

Given the requirement of high through put with constraints of real time
processing and a need for higher detection rates, we define face detection as one
of the most constraining problems in the wide domain of image processing.

8.2 Description
There are several approaches to solve the face detection problem. These ap-
proaches are broadly classified in to following categories as described by Yang et
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Figure 8.1: Illustration of integral image used in Viola and Jones algorithm [111].

al. [123]: 1) knowledge-based methods; 2) feature invariant approaches; 3) tem-
plate matching methods; and 4) appearance-based method. The face detection
algorithm proposed by Viola and Jones [111] was among the earlier approaches
for implementation in real time with improved detection rates. This algorithm
made use of rectangular features to build a classifier to select a small number
of important features. In order to compute these features, this algorithm made
use of integral image representation of input images. The detection method
is based on a cascade of classifiers that are applied such that it significantly
improves the performance of detection process. As an example of a typical real-
time face detection algorithm, the one by Viola and Jones [111] is summarized
below. However, any face detection algorithm or novel combination of different
algorithms can be used to provide solution to this constraining problem.

Viola and Jones algorithm [111] makes use of integral image to compute
simple Haar like rectangular features. Integral image or summed area table is
an algorithm used for efficiently generating the sum of values for cells (pixels) in
a rectangular grid. The integral image at location x, y in a given image contains
the sum of the pixels above and to the left of x, y, including the pixel value at
x, y. Integral image at location x, y shown in Figure 8.1 is computed as per
Equation 8.1.

ii(x, y) =
∑

x′≤ x,y′≤ y

i(x
′
, y

′
) (8.1)

Where, i(x′
, y

′) and ii(x, y) correspond to original image and integral image
at pixel location (x, y), respectively. The sum of pixels in the region ABCD,
shown in Figure 8.1 is calculated as per Equation 8.2.



Figure 8.2: Simple Haar-like rectangle features used in Viola and Jones algo-
rithm [111].

∑
(x,y)∈ABCD

i(x, y) = ii(D) + ii(A)− ii(B)− ii(C) (8.2)

Using the integral image, computations are performed for simple Haar like
reactangular features, shown in Figure 8.2. These computations include the
weighted intensity difference between the two or more rectangular regions, when
superimposed on a given input image. The Haar like features shown in Figure
8.2 are rescaled according to the size of window of input image.

There can be extremely large number of rectangle features associated with
each image sub-window of an input image. Computing over extremely large
number of features becomes expensive. Therefore Viola and Jones made use of
AdaBoost, a boosting algorithm to select features and combine them to form
an effective classifier. The process of classifying a sub-window region of input
image is carried out as a decision tree or in a cascade structure.

Each sub-window of input image is processed by a sequence of clasifiers, with
each classifier being more complex than the previous. If a classifier rejects a
sub-window then no further processing is performed. A cascade structure of their
face detector makes it possible to build boosted classifiers which reject most of the
negative sub-windows. The number of weak classifiers and the decision threshold
for early rejection at each node in the decision tree are specified. Learning with
the use of a suitable boosting algorithm and using a set of features, a classifier
is constructed which yields to final detection of face in an input image.

8.2.1 Input
The input to the face detection problem consists of following:

1. Labeled dataset of images The input image dataset consists of images
available through open source image databases. We labeled images from
the multiple encounter dataset (MEDS) [52] which has ≈ 1300 images.
The label information is included in two text files that provide lists for the



name of image-file, image size as number of rows and columns of pixels,
number of faces in this image and the coordinates of the bounding box for
these faces. In order to label MEDS images we made use of a few state of
the art face-detectors. Where the face was not detected using one or more
face-detectors, the bounding box for faces was marked manually.

2. Detection accuracy The face detection rate depends on the allowable false
positives. An allowable false positive rate is provided as input to the face
detection problem.

8.2.2 Output
Without accurate face and facial-feature location, a noticeable degradation in
the performance of face-recognition is observed. Face detection is considered
successful if a presence and a rough location of a face is correctly identified [128].

Output from face detector is: 1) An integer equal to the number of faces
detected in an input image; and 2) coordinates of rectangular region to annotate
where a face is detected in an input image. The coordinates of the rectangle are
in terms of pixel rows and columns.

To obtain a score for matching detections using a face detector, we make use
of two scores as described by Jain and Miller [54]. They made use of receiver
operating characteristics (ROC) curves. The inference drawn from the ROC curve
is equivalent to non-parametric statistical hypethesis test. Unlike the receiver
operating characteristics (ROC) curves, we provide a threshold for maximum
false positives and accordingly evaluate detection rates for different face detectors.
We make use of two separate metrics, discrete score and continuous score. The
discrete score holds a value of either 0 or 1 while the continuous score is the ratio
of intersected area of detection to joined area as described by Jain and Miller [54].
A face detection algorithm is evaluated based on true positive detections, the
two scores (discrete and continuous) obtained for all detections with a given
false positive detection rate.

8.3 Evaluation
8.3.1 Correctness
A given solution to face detection problem is evaluated for correctness on the basis
of detection accuracy achieved with allowable false positives. Both parameters,
detection accuracy and false positives are the percentages of input image dataset.
The computations are expected to follow the IEEE standard for floating-point
arithmetic (IEEE 754-2008) on a standard x86 system.

8.3.2 Performance and Power
The unit of work is equal to one pixel of input image. Consequently, there are
(M × N) units of work; corresponding to number of rows M and number of



columns N of an input image. The performance of solution to face detection
is measured in terms of time. Power and performance numbers are average of
measurements over a large number of images in a given image dataset.

Performance is evaluated with time per units of work.
Power is evaluated with Watts per unit of work.



Constraining Problem 9

Image: Text Image Classification

Seunghwa Kang (PNNL), Joseph B. Manzano (PNNL), Nathan R. Tallent
(PNNL)

9.1 Justification
This constraining problem solves a classification problem with supervised learning
taking text images as input data. A classification problem is to assign a class
label to every input item. For example, given a handwritten image of a single
digit ranging from 0 to 9, assigning a correct label (0, 1, 2, 3, ... , or 9) to
the image is a classification problem. In supervised learning, a training set —
sample input items and the correct labels — is provided in addition to a set of
items to label; unsupervised learning attempts to learn the structure of the input
items without requiring correct labels. In this constraining problem, we focus
on classifying text images: handwritten digits, texts in shop signboards, street
house number images, and other text or artificial symbol images.

Text image classification is relevant in multiple military applications: pro-
moting situation awareness in complex battlefields through portable augmented
reality devices [122, 35], digitizing military documents [28, 27, 109], and devel-
oping a digital user interface for battle planning [39, 10]. Situation awareness
is about recognizing the surrounding environment, understanding the current
situation, and predicting changes in the near future [36]. Situation awareness
is critically important in decision making in complex battlegrounds (e.g., ur-
ban areas), and augmented reality devices have been proposed to aid military
personnel to better comprehend the surrounding situation. Supported by the
DARPA Ultra-Vis program, Applied Research Associates and BAE Systems have
developed a wearable augmented reality system (iLeader) to assist soldiers on
various military tasks such as locating friendly forces and enemies and identifying
military targets [5]. Naval research lab has developed the battle field augmented
reality system (BARS) using wearable devices [55]. Comprehending the sur-
rounding environment is even more challenging in foreign areas. Augmented
reality devices that detect and translate foreign signs and texts can assist military
forces on decision making via promoting situation awareness [122, 35]; converting
text images to digital text data is a key step in the computational pipeline.

Text image classification is also relevant in digitizing damaged military docu-
ments [28], handwritten annotations in military forms [27], and old handwritten
military registers [109]. Military commanders use courses of actions (COA)
diagrams to develop and share battle plans, and a digital pen based COA user
interface, such as nuSketch Battlespace, facilitates automation of battle plan
development and communication [39]. Courses of actions diagrams contain both
shapes and texts [10], and recognizing such shapes and texts is an important
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computational task.
We adopt the MNIST handwritten digit database and the street view house

numbers (SVHN) dataset as proxy data to represent various text and artificial
symbol images in the above applications. The MNIST database [60] has images
of handwritten digits (from 0 to 9) and the corresponding labels. The database
has 60,000 images and labels to train machine learning models. The database
provides additional 10,000 images and labels to test trained models. A trained
model attempts to correctly label the 10,000 test images. The MNIST database
has been widely used to compare various machine learning models. The current
best performing model [25] assigns incorrect labels to only 0.23% of the entire
test set images. We selected the MNIST database considering that recognizing
handwritten digits in the database resembles recognizing handwritten texts in
military documents and courses of actions diagrams.

The street view house numbers (SVHN) dataset [80] has images of numbers
embedded in natural backgrounds. The SVHN database is composed of house
number images extracted from Google street view data. The SVHN database
has 600,000 labeled images, which is 10 times more images than the MNIST
database. Lee et al. [62] labeled test images from the SVHN dataset achieving
the error rate of 1.92%. We adopted the SVHN database due to the similarity
between recognizing house digits embedded in natural scenes and recognizing
foreign characters or signs in signboards.

9.2 Description
9.2.1 Input
The MNIST homepage (http://yann.lecun.com/exdb/mnist/) provides the
following four files.

• train-images-idx3-ubyte.gz: 60,000 images for training.

• train-labels-idx1-ubyte.gz: 60,000 labels for the training images (one label
per image).

• t10k-images-idx3-ubyte.gz: 10,000 images for testing.

• t10k-labels-idx1-ubyte.gz: 10,000 labels for the testing images (one label
per image).

A single image has 28 × 28 pixels, each pixel occupying one byte to represent
a gray scale color (0 for white and 255 for black). A single label is one byte
in size holding an integer value ranging from 0 to 9. An image data file starts
with four 32 bit integers (big-endian) for the magic number (2051), number
of images (60,000 for the training file and 10,000 for the test file), number
of rows (28), and number of columns (28), respectively. The remaining part
of the file holds pixel data. A label data file starts with two 32 bit integers
(big-endian) for the magic number (2049) and the number of labels (60,000 for
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the training file and 10,000 for the test file), respectively. The remaining part of
the file stores label data. Refer the MNIST homepage for further information.
train-images-idx3-ubyte.gz and train-labels-idx1-ubyte.gz are used for the training
step, and t10k-images-idx3-ubyte.gz and t10k-labels-idx1-ubyte.gz are used for
the testing step.

The Street View House Numbers (SVHN) dataset (http://http://ufldl.
stanford.edu/housenumbers/) provides over 600,000 labeled images in two
different formats: original full sized house number images with bounding boxes
for digit characters (one bounding box for one character) and a set of 32 × 32
pixel images (each image contains a single digit character at the center). We use
the latter format in this constraining problem to minimize pre-processing efforts.
The SVHN dataset provides the following three files.

• train_32x32.mat: 73,257 color images and labels for training.

• test_32x32.mat: 26,032 color images and labels for testing.

• extra_32x32.mat: additional 531,131 color images and labels for training—
these images are less challenging to automatically label than the images in
the default training set (having 73,257 images).

These files are stored using the MAT-file format; one can load the files using
MATLAB. Each file contains one matrix containing the entire set of images and
one vector containing the correct labels for the images in the matrix. Refer
the SVHN homepage for additional details. This constraining problem uses
train_32x32.mat and extra_32x32.mat for training and test_32x32.mat for
testing.

To evaluate submitted solutions, test images may be slightly distorted (ro-
tated, scaled, horizontally and vertically shifted, and contrast and brightness
adjusted) to test the robustness of a solution and penalize overfitted solutions.

9.2.2 Output
A trained model should output one class label per one test image. For the
MNIST database, class labels 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 are assigned for digits
0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, respectively. For the SVHN dataset, class labels 0,
1, 2, 3, 4, 5, 6, 7, 8, and 9 are assigned for digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9,
respectively.

9.3 Evaluation
9.3.1 Correctness
The error rate of a trained model is the percentage of misclassified images (a
model output label does not coincide the correct label included in the dataset)
over the entire of test images.

http://http://ufldl.stanford.edu/housenumbers/
http://http://ufldl.stanford.edu/housenumbers/


9.3.2 Performance and Power
Execution time is separately measured for training and testing. Power consump-
tion is separately measured for training and testing as well. Execution time
and power consumption for the testing step will be normalized to the number
of test images. The overall performance of a classification model and its imple-
mentation will be evaluated based on the error rate (lower is better), execution
time for training, power consumption for training, normalized execution time for
testing, and normalized power consumption for testing. Different weights will be
assigned to different metrics based on varying requirements in military sites; in
general, execution time and power consumption for training are less important
as training can be performed off-site using cluster computers while testing (and
actual classification of texts and symbols) will more likely to be performed using
embedded systems (e.g., wearable devices such as glasses).



Constraining Problem 10

Image: Natural Image Classification

Seunghwa Kang (PNNL), Joseph B. Manzano (PNNL), Nitin A. Gawande
(PNNL), Nathan R. Tallent (PNNL)

10.1 Justification
This constraining problem solves a classification problem with supervised and
semi-supervised learning taking natural images as input data. A classification
problem is to assign a class label to an input item. For example, given images of
multiple military vehicle models, finding the correct model name for a vehicle
image is a classification problem. In supervised learning, a training set, sample
input items and the correct labels, is provided in addition to a set of items to
label—unsupervised learning attempts to learn the structure of the input items
without requiring correct labels. In semi-supervised learning, only a subset of the
input items in a training set are labeled; note that obtaining labeled data is often
labor intensive and significantly more expensive than obtaining unlabeled data,
and the Defense Advanced Research Projects Agency (DARPA) also emphasized
the necessity to develop a semi-supervised learning platform [30].

In this constraining problem, we focus on classifying natural images: photos of
various objects such as military vehicles. Natural image classification is relevant
in multiple military applications: processing wide area motion imagery (WAMI)
data, synthetic aperture radar (SAR) images, and video streams from typical
narrow view cameras for surveillance and reconnaissance. WAMI sensors are
attached on flying vehicles and produce image streams of wide areas; analyzing
WAMI data is a significant technical challenge [92]. A SAR device, placed on a
moving airplane or satellite, emulates the behavior of an extremely wide aperture
radar by computationally processing signals collected along the device’s forward
motion [21]. Surveillance cameras, whether fixed or mounted on ground vehicles,
also produce a large volume of streaming videos. It is impractical to manually
monitor multiple streams of high resolution images from these devices. Data
mining techniques are often applied to automatically detect important events,
and image classification is an important step in the computational pipeline—such
as identifying different models of military vehicles [108], distinguishing vehicles
from background objects or other distractors [67, 103], and classifying land cover
types (sea, park, and urban areas) [6, 3].

We adopt the MSTAR (Moving and Stationary Target Acquisition and
Recognition) dataset, the NORB dataset, and the STL-10 dataset as proxy
data to represent various natural image classification challenges in the above
applications. The MSTAR dataset [99] has SAR images of military and civilian
vehicles, a stationary structure (SLICY), and rural and urban background scenes
(clutter). Images in the dataset are collected using different angles between a SAR
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device and an object (or using different depression angles in SAR terminology).
The dataset has SAR images having varying numbers of pixels stored in multiple
compressed files. Typically, only a subset of the dataset is used for different
purposes. Similar to [115, 84, 120, 50], this constraining problem uses 128 pixel
× 128 pixel images of three military vehicle models: T72, BMP2, and BTR70.
T72 and BMP2 in this subset has three variants (with three different serial
numbers), and BTR70 has only one variant. Images in the subset are collected
using 17 degree and 15 degree depression angles. 1622 images (used for training)
are collected using a 17 degree depression angle, and 1365 images (used for
testing) are collected using a 15 degree depression angle. Researchers often use
images belonging to only one variant per model for training to demonstrate the
performance of their classification algorithm on unseen variants [115, 120]. This
constraining problem follows this practice; this reduces the training set size to
698 images. The MSTAR dataset is relatively small and old compared to other
widely used machine learning datasets, but this constraining problem includes
this dataset considering its direct relevance to military applications.

The NORB dataset [61] contains post-processed images of 50 toy instances
belonging to 5 classes (four legged animals, human figures, airplanes, trucks,
and cars)—10 toy instances per class. Each instance is photographed under 9
different angles between a camera and a toy instance, 18 different azimuths, and 6
different lighting conditions. Post-processing distorts (rotates, scales, horizontally
and vertically shits, and increases or decreases brightness and contrast) images;
superposes images on complex backgrounds; and adds distracting objects near
image boundaries. This dataset is created to test classification algorithms’
invariant properties; the above mentioned post-processing does not change the
correct class label of a processed image and a classification algorithm should be
able to find the correct labels for distorted images. The dataset also contains
images without main object; images in this class has only backgrounds and
distracting objects. A classification algorithm should refuse to map an image
with no main object to one of the 5 classes; or should map the image to the
“blank” class. The NORB dataset provides 583,200 labeled images for training
and 116,640 labeled images for testing. Cireşan and his collaborators labeled
this dataset with the 2.7% error rate using a classification algorithm based on
multi-column deep neural networks [25]. This dataset is adopted owing to the
dataset’s relevance in classifying military object photos taken under different
conditions and having different backgrounds and distracting objects.

The STL-10 dataset [26] is composed of a small number of labeled images and
a large number of unlabeled images for semi-supervised learning. The dataset
has labeled images belonging to 10 classes: airplane, bird, car, cat, dear, dog,
horse, monkey, ship, and truck. The dataset provides 500 images per class and
800 images per class for training and testing, respectively. The dataset also
provides 100,000 unlabeled images. The unlabeled dataset is composed of images
belonging to the 10 classes and images outside the 10 classes (such as images of
bears, rabbits, trains, and buses). Each image has 96 × 96 pixels. Images in
this dataset were acquired from the ImageNet database [32]. Swersky, Snoek,
and Adams reported the accuracy of 70.1% in classifying this dataset [106]. We



selected this dataset considering the importance of semi-supervised learning in
military applications; the Defense Advanced Research Projects Agency (DARPA)
published a broad agency announcement to develop a semi-supervised learning
platform based on deep learning architectures [30].

10.2 Description
10.2.1 Input
The MSTAR dataset is available to download from the following url: https://
www.sdms.afrl.af.mil/index.php?collection=mstar. The MSTAR dataset
includes multiple compressed files. This constraining problem uses the MSTAR-
PublicTargetChips-T72-BMP2-BTR70-SLICY.zip file. This file has image chips
of three vehicle models (T72, BMP2, and BTR70). Table 10.1 summarizes
the numbers of images used for training and testing for different models and
variants. For training, images belonging to the second and third serial numbers
(SN_812 and SN_S7 for T72 and SN_9566 and SN_C21 for BMP2) should
not be used; this tests the performance of a classification algorithm on unseen
variants [115, 120].

model T72 BMP2 BTR70
serial no. SN_132 SN_812 SN_S7 SN_9563 SN_9566 SN_C21 SN_C71
training
(17 degree)

232 (231) (228) 233 (232) (233) 233

testing
(15 degree)

196 195 191 195 196 196 196

Table 10.1: This table summarizes the numbers of images for different vehicle
models and serial numbers. Images collected using a 17 degree depression angle
are used for training. Images collected using a 15 degree depression angle are
used for testing. For training, images belonging to only one serial number are
used for each vehicle model (the numbers inside parentheses denote the numbers
of images for the variants excluded for training).

Decompressing theMSTAR-PublicTargetChips-T72-BMP2-BTR70-SLICY.zip
file produces multiple MSTAR image files, one file per image. Each file has a
variable length text header followed by two blocks of 128 × 128 × 4 (single-
precision big-endian floating point number) bytes; the first block stores mag-
nitude data and the second block stores phase data (phase data can be used
to enhance the image quality). The header in a file stores detailed informa-
tion about the image (the header size, image size, depression angle, model
name, serial number, and other auxiliary information). A software tool to
convert an MSTAR file to a JPEG or TIFF image file is available form https:
//www.sdms.afrl.af.mil/index.php?collection=tools_mstar as well. Re-
fer to the MSTAR homepage for additional details.

The NORB dataset (http://www.cs.nyu.edu/~ylclab/data/norb-v1.0/)
provides 10 <"-dat" file, "-cat" file, "-info" file> triplets for training and 2 triplets

https://www.sdms.afrl.af.mil/index.php?collection=mstar
https://www.sdms.afrl.af.mil/index.php?collection=mstar
https://www.sdms.afrl.af.mil/index.php?collection=tools_mstar
https://www.sdms.afrl.af.mil/index.php?collection=tools_mstar
http://www.cs.nyu.edu/~ylclab/data/norb-v1.0/


for testing.

• norb-5x46789x9x18x6x2x108x108-training-(01,02,03,04,05,06,07,08,09, or
10)-dat.mat.gz : 10 "-dat" files for training. Each file stores a header followed
by a 29,160 × 2 × 108 × 108 matrix. This file stores 29,160 image pairs
(6 classes × 5 instances × 9 elevations × 18 azimuths) of 108 × 108 pixels.
Each element in a matrix is a 1 byte integer storing a pixel value.

• norb-5x46789x9x18x6x2x108x108-training-(01,02,03,04,05,06,07,08,09, or
10)-cat.mat.gz : 10 "-cat" files for training. Each file stores a header followed
by a 29,160 dimensional vector. Each vector element is a 4 byte integer
storing the correct label for the corresponding image pair.

• norb-5x46789x9x18x6x2x108x108-training-(01,02,03,04,05,06,07,08,09, or
10)-info.mat.gz: 10 "-info" files for training. Each files stores a header
followed by a 29,160 × 10 matrix. A "-info" file provides 10 additional
attributes per image (such as the instance number within the class, camera
elevation, azimuth, and other auxiliary information) for 29,160 images.
Each attribute is a 4 byte integer.

• norb-5x01235x9x18x6x2x108x108-testing-(01 or 02)-dat.mat.gz: 2 "-dat"
files for testing. The file format is identical to the "-dat" files used for
training.

• norb-5x01235x9x18x6x2x108x108-testing-(01 or 02)-cat.mat.gz: 2 "-cat"
files for testing. The file format is identical to the "-cat" files used for
training.

• norb-5x01235x9x18x6x2x108x108-testing-(01 or 02)-info.mat.gz: 2 "-info"
files for testing. The file format is identical to the "-info" files used for
training.

A header file has two 4 byte integers storing a magic number and the
dimensionality of the matrix followed by 3 or more integers storing the size of
the matrix in each dimension. A magic number specifies the type of matrix
elements (e.g. single-precision floating point number, double-precision floating
point number, one byte integer, and four byte integer). A vector is considered
as an 1-dimensional matrix. If the dimensionality of the matrix is equal to or
smaller than 3, 3 integers store the matrix size in each dimension; only the
first N integers are valid for an N -dimensional matrix. If N is larger than 3,
N integers store the matrix size in each dimension. According to the NORB
homepage, only "-dat" and "-cat" files are used for typical training and testing
tasks. This constraining problem also asks to use only "-dat" and "-cat" files
assuming that such auxiliary data are not always available. See the NORB
homepage for additional information about the files in the dataset.

The STL-10 homepage (http://cs.stanford.edu/~acoates/stl10/) pro-
vides 100,000 unlabeled images, 500 labeled images per class for training, and
800 labeled images per class for testing. Each image has three channels (R, G,
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and B), and each channel has 96 × 96 pixels (one byte unsigned integer per
pixel). The STL-10 homepage asks participants to make 10 trials and report the
average error rate. In each trial, a classification model is trained using the entire
set of unlabeled images and only a predefined subset of the labeled training
images. 10 folds are provided as well—each fold contains the indices of the
labeled images to be used in each trial. The entire set of labeled testing images
are used for testing in every trial. The STL-10 dataset provides MATLAB files
and binary files; users can pick either MATLAB files or binary files. The STL-10
dataset provides the following MATLAB files.

• train.mat: This file has the following variables: "X", "y", "class_names"
and "fold_indices". The matrix "X" contains 1 image per row. A single
row stores a 2-dimensional image in the column-major order for the R,
G, B channels (the R channel data comes first, followed by the G and B
channel data). The vector "y" contains labels, one label per image. The
"class_names" variable contains class names. The "fold_indices" variable
contains the indices for the subset of the labeled images to be used in each
trial. "fold_indices{i}" provides the indices to be used for the ith trial.

• test.mat: This file has the following variables: "X", "y", and "class_names".
The format of each variable is identical to the variables in the train.mat
file.

• unlabeled.mat: This file has the following variables: "X" and "class_names".
The format of each variable is identical to the variables in the train.mat
file.

The STL-10 dataset also provides the following binary files as well.

• train_X.bin: This file stores training images.

• train_y.bin: This file stores labels for the training images stored in the
train_X.bin file.

• test_X.bin: This file store testing images.

• test_y.bin: This file stores labels for the testing images stored in the
test_X.bin file.

• unlabeled.bin: This file stores additional unlabeled images.

• class_names.txt: This file stores class names.

• fold_indices.txt: This file stores the indices for the subsets to be used in
10 trials.

Refer to the STl-10 homepage for additional details.
To evaluate submitted solutions, test images may be slightly distorted (ro-

tated, scaled, horizontally and vertically shifted, and contrast and brightness
adjusted) to test the robustness of a solution and penalize overfitted solutions.



10.2.2 Output
A trained model should output one class label per one test image. For the
MSTAR database, class labels 0, 1, and 2 are assigned for vehicle models T72,
BMP2 and BTR70, respectively. For the NORB dataset, class labels 0, 1, 2, 3,
4, and 5 are assigned for animal, human, plane, truck, car, and blank (which
has no main object), respectively. For the STL-10 dataset, class labels 0, 1, 2,
3, 4, 5, 6, 7, 8, and 9 are assigned for airplane, bird, car, cat, deer, dog, horse,
monkey, ship, and truck, respectively.

10.3 Evaluation
10.3.1 Correctness
The error rate of a trained model is the percentage of the number of misclassified
images (a model output label does not coincide the correct label included in the
dataset) over the number of test images.

10.3.2 Performance and Power
Execution time is separately measured for training and testing. Power consump-
tion is separately measured for training and testing as well. Execution time and
power consumption for the testing step will be normalized for the number of
test images. The overall performance of a classification model and its imple-
mentation will be evaluated based on the error rate (lower is better), execution
time for training, power consumption for training, normalized execution time for
testing, and normalized power consumption for testing. Different weights will be
assigned to different metrics based on varying requirements in military sites; in
general, execution time and power consumption for training are less important
as training can be performed off-site using cluster computers while testing (and
actual classification of images) will more likely to be performed using embedded
systems attached to military vehicles carrying radars, sensors, or cameras.



Constraining Problem 11

Hyperspectral Image: Signature Extraction

Jonathan D. Suter (PNNL), Nitin A. Gawande (PNNL), Joseph B. Manzano
(PNNL), Nathan R. Tallent (PNNL)

11.1 Justification
Hyperspectral imaging (HSI) is a data-rich tool that acquires a large number of
images of a scene or object, each capturing the irradiance values at a different
wavelength band [42]. A full set of these images represents a three dimensional
array, with two spatial dimensions (the imaging field of view) and a wavelength
or frequency dimension. This three dimensional array is typically referred to
as a hypercube. A hypercube offers an added degree of utility for spectroscopic
applications, for which spectra can now be registered to specific locations. For
the most part, HSI applications use the fingerprinting capability of optical
spectroscopy to identify substances and chemicals within a field of view. The
high spectral resolution of modern HSI cameras makes it possible to identify
chemical species with a greater degree of confidence than ever before.

In practice, the collection of data corresponding to a hypercube requires a HSI
camera and a light source. Light from the source interacts with the materials or
objects of interest and is transmitted, scattered, reflected, or re-emitted into the
lens of the HSI camera, which then uses one of several technologies (dispersive
prism, Fourier transform, etc.) to record the spatially-and-spectrally resolved
information.

The applications being pursued for HSI are as diverse as the applications for
optical spectroscopies in general. Although, most common applications seem to
be variations of remote sensing, near-field and forensic applications have been
explored with great success. The most popular applications for HSI include
industrial process monitoring [51], geological mineralogy [110], agriculture [72],
astronomy [95], chemical imaging [37], aerial surveillance [124], and even medical
applications [70]. The wavelengths of interest for these applications can include
anything from the ultraviolet to the longwave infrared, are dictated by the
spectral features that the user is interested in, and necessarily inform the type
of HSI camera employed in a given study.

In order to extract useful data from a hypercube, a large amount of data
processing is often required. The three dimensional nature of the hypercube is
both a blessing and a curse, because it accommodates a wealth of data, and
yet is very difficult to view without rigorous processing. A number of steps
are involved in processing, and these will vary depending on the application
and depending on what the user knows about the materials within the field of
view. Regardless of application, the first step in the data processing sequence
should entail normalizing the spectral radiance values in the hypercube relative
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to the spectral radiance of the incident light. The normalization curve could be
the solar spectrum or it could be the spectral intensity of a man-made source
like a laser, bulb, or LED. Once a normalized hypercube has been generated,
the subsequent actions depend largely on what the analyst knows about the
materials and surfaces within the hypercube field of view. If library spectra are
available for known or suspected chemical species, then those can be searched
first. By “library” spectra, we refer to reflection spectra that have been acquired
in a controlled laboratory setting for known chemicals. Simple linear unmixing
algorithms like least squared analysis can be used to identify spatial pixels that
strongly match the library spectra. One of the weaknesses of library spectrum
fitting is that the controlled laboratory settings under which the library spectrum
was acquired may present the chemical in a state that is not realistic compared to
the states or morphologies that exist under field conditions. Therefore, it is likely
that additional analysis will have to be undertaken to deconvolve and interpret
the remaining component spectra. These types of subsequent processing are
typically referred to as endmember extraction or signature extraction.

Endmembers are defined as the full set of spectra which can be linearly
combined to explain all of the spectral curves within a hypercube [14]. Library
spectra fit within this broad definition of “endmember,” but there are almost
always many unsuspected components leftover after the anticipated spectra
are accounted for. Often, these endmembers will represent signatures from
interference or background compounds, but sometimes the most interesting
features in a hypercube lie within the unknown endmember spectra. Due to
the unknown aspect of endmembers, extraction can be a significant challenge
and it has been the focus of a great deal of research effort in recent decades
[125]. Researchers are currently tackling the problem from two simultaneous
directions. One is by exploring the fundamental physics of how light and matter
interacts in order to develop sophisticated predictive models. On the other side,
exhaustive efforts to boost the effectiveness of extraction algorithms have also
improved our ability to extract and classify endmembers in terms of distribution
and importance. Many different algorithms have been explored, and side-by-side
comparisons between them are not always conveniently available. Therefore,
improvement and better characterization of these algorithms remains an urgent
and unfinished scientific task. We therefore describe endmember or signature
extraction as one of the most constraining problem in the domain of hyperspectral
image processing.

11.2 Description
11.2.1 Input
The input dataset is a hyperspectral scene called hypercube shown in figure 11.1.
The input data set has images consisting of M number of pixel rows, N number
of pixel columns, and L number of bands corresponding to different wavelengths.
An input generator is made available for any user to make a custom hypercube



Figure 11.1: Hyperspectral image data cube (hypercube).

for this constraining problem.

Input Generator

The input generator is a software tool which enables making a hypercube with
variable size and hyperspectral scene complexity. A user of this tool can choose
size of the hyperspectral imaging scene. While any variable size can be used,
default image sizes of 256 × 256 pixels, 1024 × 1024, and 2048 × 2048 are
provided corresponding to small, medium, and large cases, respectively. The
next input to the input generator is information on spectra which is used to
construct hyperspectral scene. The input generator includes information on a
large number of spectra from the ASTER Spectral Library Version 2.0 [8]. Any
other spectrum of interest can also be included in addition to already included
spectra. The format of these spectra is ASCII with information in two columns
corresponding to spectra wavelengths and percent reflectance or absorbance.
The input generator makes use of library spectra to make different spectrum
regions shown as in Figure 11.2. The extent of spread of these regions can be
changed and the orientation can be altered by rotation with a 90◦ increment.
Figure 11.2 correspond to individual spectrum scene with a total L number
of bands that can be included in the hypercube. The input generator provides
a choice to the users to select specific portions from the input library spectra.



Different disjointed portions of spectra wavelenth can be included to form a total
L number of bands.

(a)

(b)

Figure 11.2: Spectra regions: (a) Different geometric models (b) with noise.

Finally a hypercube is constructed by mixing different regions as shown in
Figure 11.2. Each region used in mixing correspond to one spectrum. A variable
number of spectra can be included in the construction of hypercube from library
spectra. A linear mixture model as adopted by Plaza et al. [90] is used to create
input hyperspectral scenes as per Equation 11.1. The contribution of ambient
clutter and instrument noise is added by injecting random noise into the input
hyperspectral scene data. Let X(i, j) be a vector containing discrete spectrum
at pixel with spatial coordinates (i, j) in the hypercube. Then X(i, j) is denoted
by Equation 11.1.

X (i, j) = (SNR + n (i, j)) ·
R∑
k=1

αk (i, j) · rk (11.1)

where, R is the total number of reference spectral signatures used to simulate
the scene, αk (i, j) is the assigned fractional abundance of spectral signature rk at
pixel (i, j). The signal to noise ratio (SNR) and noise factor n (i, j) inject noise
which is randomly distributed. The input value for SNR and the distribution
model for n can be modified in the input generator.



11.2.2 Output
Endmember or signature extraction is the process of selecting a set of pure
signature spectra of the materials present in a remotely sensed hyperspectral
scene [102]. A mathematical representation of endmember with regards to
hyperspectral imaging can be found elsewhere [133], [132], [22]. A simple de-
scription considering a linear spectral mixture model of endmembers is described
here. In a hyperspectral imagery scene with L bands, a pixel in this imagery at
discrete spatial coordinates (i, j) is represented by a vector X(i, j) as follows:

X(i, j) = [x1(i, j), x2(i, j), · · · , xL(i, j)] (11.2)

Considering a linear mixture model, each pixel vector in the original scene can
be modeled as follows:

X(i, j) =
p∑
k=1

Φk (i, j) ·Ek + n(i, j) (11.3)

where, Ek is the spectral response of endmember k, Φk (i, j) is a scalar value
assigning the fractional abundance of endmember k at pixel X(i, j), p is the
total number of endmembers, n(i, j) is a noise vector. The solution to the
linear spectral mixture problem as defined by Equation 11.2 is successful
estimation of p number of endmembers that are present in the input and the
correct determination of a set of endmembers {Ek}pk=1 and their corresponding
abundance fractions {Φk(i, j)}pk=1 at each pixel X(i, j). The two constraints
that are normally imposed on such model are: (a) abundance non-negativity

constraint, Φk(i, j) ≥ 0; and (b) abundance sum-to-one constraint,
p∑
k=1

Φk(i, j) =

1.
Solution to this signature extraction constraining problem can be obtained

using any appropriate signature extraction algorithm, combination of different
algorithms or an entirely novel implementation. There are several different
algorithms to find endmembers that are pure signatures in a given hyperspectral
data cube. Plaza and Chang [89] described a few different class of signature
extraction algorithms and the challenges to these approaches. Described below
are two popular algorithms out of several commonly used algorithms. The first
algorithm is N-Finder algorithm (N-FINDR), which was originally developed
by Winter [118]. We described the implementation of this algorithm given by
Chang [22]. The second commonly used algorithm which is described here is the
pixel purity index (PPI) algorithm by Boardman et al. [15].

N-Finder (NFINDR) algorithm

1. Given the datacube of size (M ×N × L), with image having M rows and
N columns, and L spectral bands. There are p endmembers that are to be
extracted.

2. Data size is reduced by applying a suitable dimensionality reduction trans-
form (DRT) to reduce data dimensionality from L to (p− 1).



3. An initial set of endmembers that are randomly generated from the in-
put data given by p sample vectors e1, e2, · · · ep form a p-vertex simplex
S(e1, e2, · · · ep) and has volume, V(e1, e2, · · · ep).

V(e1, e2, · · · ep) =

∣∣∣∣det [ 1 1 · · · 1
e1 e2 · · · ep

]∣∣∣∣
(p− 1)! (11.4)

4. Find a set of p sample vectors {e∗1, e∗2, · · · e∗p}, that maximizes volume V

{
e∗1, e∗2, · · · e∗p

}
= arg {maxV (e1, e2, · · · ep)} (11.5)

Pixel Purity Index (PPI) algorithm
The PPI implementation is performed in three steps: reduction to apparent

surface reflectance; pixel purity determination; and partial unmixing [15].
However, this original implementation lacks full description and therefore a few
variants of PPI algorithm are cited in literature [89], [89]. The PPI algorithm is
implemented by performing following steps:

1. Use virtual dimensionality (VD) to determine the number of dimensions p
that are required to be retained after dimensionality reduction. Apply the
maximum noise fraction (MNF) or principal component analysis (PCA)
transform to reduce dimensionality of the data set to p component images.

2. Randomly generate a set of K unit vectors, called skewers, {skewerj}Kj=1.
Where K is a presumed sufficiently large positive integer.

3. Project all data sample vectors ri onto each skewer, skewerj via dot
product (ri · skewerj) to find extrema set for skewerj , denoted by
Sextrema (skewerj). An indicator function of data set R, denoted by
IS (x) represent membership of an element x to a particular set S as
follows:

IS (x) =
{

1, if x ∈ S
0, if x /∈ S

(11.6)

4. Calculate the PPI score NPPI associated to each pixel vector ri as follows:

NPPI (ri) =
K∑
j=1

ISextrema (skewerj) (ri) (11.7)

5. Using an appropriate threshold value tv find pixel vectors with scores of
NPPI (ri) above tv and label them as spectral endmembers.



Metric
A given solution to endmember extraction problem is evaluated using a

spectral angle mapper (SAM) metric [58]. The SAM metric computes the angle
between any pixel vector and a reference spectrum. The reference spectrum can
be at any other pixel or a spectrum from a spectra library. The calculation of
spectral angle Mapper (SAM) as per Equation 11.8 makes this metric independent
of length of the two vectors. This makes SAM insensitive to spectrum gain
factors and therefore an apparent reflectance spectra can be directly compared
with a laboratory spectra [58]. In this constraining problem, we use the SAM
metric for a group of pixels using Equation 11.8 and comparison of group of
pixels with a reference spectrum using Equation 11.8.

SAM (X (i, j) , µ) = cos−1
(
〈X (i, j) , µ〉
‖X (i, j) ‖‖µ‖

)
(11.8)

where,

〈X (i, j) , µ〉 =
L∑
k=1

X (i, j)k µk,

‖X (i, j) ‖ =
(

L∑
k=1

(X (i, j)k)2
)1/2

, and

‖µ‖ =
(

L∑
k=1

(µk)2
)1/2

,

µ is a reference spectrum and L is the total number of spectrum bands used for
computing SAM,

A low SAM value corresponds to mean high spectral similarity between the
two k-dimensional vectors X and µ.

11.3 Evaluation
11.3.1 Correctness
The computations are expected to follow the IEEE standard for floating-point
arithmetic (IEEE 754-2008) on a standard x86 system. Quantitative evaluation
of signature spectra extracted using a novel implementation will be done using
the spectral angle mapper metric mentioned in previous section.

11.3.2 Performance and Power
The unit of work is one pixel in the hypercube. Consequently, there are (M×N×
L) units of work; corresponding to number of rows M and number of columns
N of images, and number of spectral wavelength bands L .

Performance is evaluated with time per units of work.
Power is evaluated with Watts per unit of work.



Constraining Problem 12

Hyperspectral Image: Target Detection

Erin I. Barker (PNNL), Nitin Gawande (PNNL), Joseph B. Manzano (PNNL),
Nathan Tallent (PNNL)

12.1 Justification
Hyperspectral imaging collects information at a large number of narrow and
contiguous wavelength bands from the electromagnetic spectrum for a given field
of view or scene. Essentially a vector of reflectance values with each component
corresponding to a particular wavelength band is gathered at each pixel of the
image. This results in what is commonly known as a hyperspectral data cube.
This three dimensional array is typically referred to as a hypercube. Hyperspectral
imagery is used for a variety of applications. Images collected from a given
sensor can be post-processed in multiple ways to extract different information.
With no a priori knowledge of the image’s purpose the entire data cube must
be stored and transmitted. The size of the cube increases with increasing scene
size or spatial resolution as well as increasing spectral resolution. The large data
volumes put stringent requirements on transmission capability from the sensor,
storage on and off the sensor, and computational resources for post-processing
the imagery [11].

Target detection attempts to identify a given target within a scene. However,
the target typically exists in a relatively small number of the pixel. Due to spatial
resolution restrictions the target may not fill the pixel size resulting in mixed
pixels. The scarcity of targets also results in a lack of training data from which
to determine the target’s spectral signature. This complicates target detection
algorithms by having to estimate the target’s signature and statistics about how
it varies due to interference. Therefore most classification algorithms developed
and optimized for hyperspectral image processing are not applicable [74]. The
need for real-time post-processing of this computational intensive problem makes
it a constraining problem for hyperspectral image processing.

12.2 Description
Creating a photographic image generates a 2D representation of a scene. For
each pixel of the photograph a combination of the visible light bans, red, green,
and blue, is captured. However, these are a very small fraction of the available
spectral wavelengths. Spectral imaging captures the radiance of many more
spectrum at each spatial pixel. If a discrete number of wavelengths from the
electromagnetic spectrum are captured this is refereed to as spectral imaging
or multispectral imaging. Hyperspectral imaging (HSI) refers to capturing the
radiance for a very large number of contiguous spectral wavelength bands.
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Capturing a hyperspectral image requires a source of radiation or illumination,
typically the sun, a surface to be imaged, and the sensor capturing the radiance
of the various wavelength bands. What the spectra for a given pixel looks like
depends on how the material within the pixel reflects, absorbs, and emits the
radiation and the path through the atmosphere that the radiation took to reach
the material and then reach the sensor. How the atmosphere modifies and
interferes with the spectra becomes important later on.

The digital representation of a simple 2D photograph is a single color value
for each pixel. Since HSI is capturing a radiance value for large number of
wavelengths the digital representation becomes 3D. The x and y axes are the
spatial coordinates of the scene and the third dimension, γ, is the radiance
value for each wavelength. This 3D data representation is often referred to as a
hyperspectral data cube. As the spatial resolution or the number of wavelengths
captured increases so does the size of the data cube. Typically the data volume
increases linearly with the number of spectral bands and as the square of the
spatial resolution [59]. Therefore in practice the cost of data storage, transmission
from the sensor, and post-processing must be weighed against the benefit of
increasing either the spatial or spectral dimensions. Because sensors capture
radiance at all specified wavelength the is no need for a priori knowledge of
what the hyperspectral image will be utilized for or the type of post-processing
that will be conducted. Therefore, a single hyperspectral image can be used
for multiple purposed. However, this means many wavelength may be capture
that will not be used in post-processing which increases the data storage and
transmission requirements without explicit benefit.

Hyperspectral imaging was initial developed for mining and geology applica-
tions but is now utilized in a wide range of applications including agriculture for
determining crop health, astronomy. biomedical imaging, mineralogy, physics,
and surveillance. Hyperspectral imaging is particularly useful when shape and
morphology information are not sufficient to describe a scene. For example,
when multiple materials are in close proximity or contained within a single pixel,
when shape and morphology information are not known in advanced, and for
cases in which the shape and morphology are altered due to neighboring objects
or deception.

Once a hyperspectral image has been captured the typical workflow is shown
in Figure 12.1. The type of detection statistic selected depends on the goal of
the post-processing. Independent of specific application area the purpose of
analyzing a hyperspectral image can fall into a small set of categories including
classification, unmixing, change detection, and target or anomaly detection.
The goal of classification is to group pixels that contain the same or similar
materials until all pixels are assigned to a class. Unmixing strives to separate
multiple materials that appear within a single pixel or neighboring pixels. This is
particularly useful for mineral exploration to determine the percentage of a given
mineral present. Given a series of hyperspectral images captures over a period of
time, changes in the spectra for a given spatial location can determine changes
occurring within a scene. Finally, target detection and anomaly detection seek
to find a relatively few number of pixels within a scene that contain a specific



spectral signature or simply vary from the background spectra. For target
detection, the goal is to separate a specific spectral signature from the rest of
the scene deemed the background. The goal of anomaly detection is to find any
pixel with a spectrum that deviates from the average spectra of the rest of the
scene. Anomaly detection can be viewed as a specific case of target detection.
This specification focuses on the larger problem of target detection.

Figure 12.1: General workflow for hyperspectral image analysis [74].

Hyperspectral imaging can be particularly useful for target detection for
several reasons. Spatial resolution may not allow for shape and morphology
information to be extracted. Also spectral information can be more reliable
when the target of interest is obscured due to surrounding materials or objects
or when deception is used to conceal or alter the shape of a target.

In an ideal situation a spectral signature is known for the target. Then the
workflow becomes comparing the spectra for each pixel to the target signature
and classifying the pixel as having the target present or absent. The spectral
signature for a given target or material is often extracted from sets of training
data where a target is know to exist. However, one of the difficulties of target
detection is that the target is present in relatively few pixels of a scene and
limited to no training data is available. Target detection also suffers from the
general HSI issues of variation of the signature signal due to sources of noise such
as atmospheric conditions, angle of view, and characteristics of the radiation
source (i.e. angle of sun, time of day, season, and latitude) and pixels containing
multiple materials or target mixed with background.

The general workflow begins by specifying a binary hypothesis of the target
being present in the current pixel or the target being absent (i.e. the pixel is part
of the background) as shown in Equation 12.1. A detection statistic is utilized
to determine the probability of the target being present or absent and cast as
a likelihood ratio of p(targetpresent)/p(targetabsent). If the likelihood ratio is
greater than a determined threshold then the target is determined to be present.
The determination of the threshold value is a complicated process and an area
of continuing research but is beyond the scope of this specification.

Λ(x) = p (x|target present)
p (x|target absent) (12.1)

Different assumptions about input available and how this changes approach.
What is known and what needs to be estimated.



The general class of detection statistics used is dependent on which variables
are known and which need to be estimated, the presence of variation added to
the spectra, and whether a target is full pixel or partial pixel (mixed). Since
most target detection sensors are space based or aircraft mounted, all sources of
noise can add variability to the spectra.

The simplest case is one where the mean and covariance of the target and
background spectra are known and all pixels are pure target or background
(i.e. full pixels). Given adequate training data and modeling the spectra as
random vectors with multivariate normal distributions, the probability densities
are known resulting in the following hypotheses:

H0 : (x) N (µ0,Γ0) target absent
H1 : (x) N (µ1,Γ1) target present

In this case, a quadratic Neyman-Pearson detector can be designed as follows:

y = D(x) = (x− µ0)T Γ−1
0 (x− µ0)− (x− µ1)T Γ−1

1 (x− µ1) (12.2)

This likelihoood-ratio detector calculates the Mahalanobis distance of the
current spectrum from the centers of the target and background spectra. If the
target and background have the same covariance matrix, Γ1 = Γ0 = Γ, then the
detector reduces to a linear form

y = D(x) = cTMFx, (12.3)

where

cTMF = κΓ−1 (µ1 − µ0) , (12.4)

and where κ is a normalization constant. This is known as Fisher’s linear
discriminant or a matched filter (MF).

Due to sparsity of the target, in practice the statistics of the target are not
know and must be estimated. Therefore, the quadratic detector and matched
filter are not longer applicable. Only considering the case where the target and
background have the same covariance matrix, Γ1 = Γ0 = Γ, reduces the problem
to anomaly detection and makes it tractable. For this case, the likelihood ratio
test becomes

y = D(x) = (x− µ0)T Γ−1 (x− µ0) , (12.5)

which calculates the Mahalanobis distance between the current pixel and the
mean of the background spectra. Unfortunately the lack of information about
the target spectra makes this equation nonlinear.

The class of adaptive detectors still considers full pixels, but expands to
the case of the statistics of the background also being unknown. This requires
the estimation of the mean and covariance of the background. This is typical



accomplished by using all of the pixel since the target pixels are assumed sparse.
The number of pixels used to estimate the background statistics must be large
enough to ensure the covariance matrix can be inverted but small enough for
spectral homogeneity. It should be noted that adaptive detectors lose their
Neyman-Pearson optimality properties and the detection statistics are no longer
normal distributions. Finally, the performance of adaptive detectors approach
optimum detectors as the estimation of the covariance matrix improves. In
practice, the more common case is that pixels contain a mix of target and
background (i.e. subpixel targets). Typically this case is assumed to be able to
be modeled as a linear combination of the target and background spectra plus
an additive amount of noise due to variability of the spectra. While variability
such as the illumination level modify the length or magnitude of a given spectra,
the direction or angular orientation of the spectra remains the same. Therefore,
the goal of subpixel target detection algorithms is to determine the separation
of a spectra from the target and background spectra.

Different mathematical models are utilized to describe the variability of a
spectra which results in different families of detection algorithms. The variability
of the target spectra is modeled using subspace models while the variability of
the background is modeled with subspace or statistical models. It is this choice
in background model that separates the families of subpixel target detection
algorithms.

For detectors utilizing statistical models, it is often assumed that additive
noise is present in the background spectra and is modeled by a multivariate
normal distribution. The statistic of the background spectra are determined
from training data that is assumed statistically independent from the current
test pixel. The hypotheses become

H0 : x = v target absent
H1 : x = Sa + v target present

The current pixel spectra x has the mean of the background µ0 already
removed for simplicity. For this case, utilizing a generalized likelihood ratio
(GLR) approach requires the maximum-likelihood estimate of the covariance
matrix of the background. A simplified GLR detector is

DA(x) = xT Γ̂−1x, (12.6)

where Γ̂ is the maximum-likelihood estimate of the covariance matrix

Γ̂ = 1
N

N∑
n=1

x(n)xT (n). (12.7)

Since the amount of background mixed with target in a pixel changes, the
hypotheses will change as well.



H0 : x = v target absent
H1 : x = Sa + σv target present

This results in the same covariance of the background but a difference variance.
This variance is directly related to the percentage of the pixel occupied by the
target. For this case, the GLR approach results in an adaptive coherence or
cosine estimator detector [56] [57].

The desirable features of any detection algorithm are a high probability of
detection, a low probability of false alarm, robustness of the algorithm as real
spectra vary from the assumed theoretical models of the spectra, constant false
alarm rate (CFAR), as well as efficient software and hardware implementation.

12.2.1 Input
The input dataset is a hyperspectral scene called hypercube. The input data set
has images consisting of M number of pixel rows, N number of pixel columns,
and L number of bands corresponding to different wavelengths. The input
generator is made available for any user to make a custom hypercube for this
constraining problem.

Input Generator

The input generator is a software tool which enables making a hypercube with
variable size and hyperspectral scene complexity. A user of this tool can choose
size of the hyperspectral imaging scene. While any variable size can be used,
default image sizes of 256 × 256 pixels, 1024 × 1024, and 2048 × 2048 are
provided corresponding to small, medium, and large cases, respectively. The
next input to the input generator is information on spectra which is used to
construct hyperspectral scene. The input generator includes information on a
large number of spectra from the ASTER Spectral Library Version 2.0 [8]. Any
other spectrum of interest can also be included in addition to already included
spectra. The format of these spectra is ASCII with information in two columns
corresponding to spectra wavelengths and percent reflectance or absorbance. A
hypercube is first constructed for a background scene without the present of
target. Another hypercube is then constructed which includes the background
scene with a target spectra injected into the scene.

12.2.2 Output
The output is expected to specify which pixels contain background and which
pixels are full or partial targets. The probability of detection and the probability
of false positives should be reported for each data set.



12.3 Evaluation
12.3.1 Correctness
The decision for each pixel will be compared to a known decision for both the
synthetic and real data. The rate of false positives will be compared to some
threshold. A successful algorithm should not only correctly identify all of the
target pixels and minimize the incorrectly identifying pixels as background or
target.

12.3.2 Performance and Power
Performance is evaluated with time per units of work.

Power is evaluated with Watts per unit of work.
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