

University of Central Florida

Evaluating Quality and Resilience of an Embedded Video Encoder against a **Continuum of Energy Consumption** Naveed Imran, Rizwan A. Ashraf and Ronald F. DeMara

University of Central Florida

Abstract

An adaptive redundancy-based fault-handling **approach** exploiting the partial dynamic reconfiguration capability of SRAM-based FPGAs is evaluated. *Fault detection* in **Signal Processing Systems** is accomplished using a simplex hardware arrangement while a deterministic *fault isolation* scheme is employed, which neither requires test vectors nor suspends the computational throughput. The approach is validated by implementation of **Discrete Cosine Transform (DCT)** and **Motion Estimation (ME)** blocks for a H.263 video encoder benchmark in Xilinx Virtex-4 FPGA.

Introduction

• Need for Autonomous Fault-handling ^[1]

Figure 2: FPGA-based video encoder platform. 'PSNR' is used as a health-metric in closed loop to regulate energy/resilience/quality.

Resource Escalation

- Allocate Reconfigurable Slack (RS) depending \bullet upon *input signal characteristics* and area margin
- *Time-multiplex* the RS with different functions to \bullet compare their outputs with other active PEs
- Faulty PEs identified in bounded reconfigurations \bullet
- (FaDReS) Fault Demotion using Reconfigurable Slack^[4]
 - Identified *healthy RS* is utilized to achieve diagnosis of all resources in the datapath
 - Focuses on completion of *fault isolation* phase
- (PURE) Priority Using Resource Escalation ^{[6][7]}
 - Identified *healthy RS* is utilized immediately for computation of highest-priority function
 - Focuses on availability and quality of throughput during *fault recovery* phase

Figure 4: Fault injection and recovery in DCT module for H.263 video encoder block using different algorithms 1) FaDReS, 2) PURE. Fault-Handling Mechanism is triggered when there is a difference of 3% in PSNR (health-metric). Faults are injected in PE₁ (DC-coefficient) and PE₄

Table 1: Dynamic Energy Consumption of FaDReS during fault isolation
 for various fault rates in terms of number of faulty modules (N_f). Energy is calculated by product of power consumed during FI and latency of FI

Number of faulty, N _f	1	2	3	4	5	6	7
FI Latency (sec)	3.5	4.9	6.1	7.0	7.7	8.2	8.4
E (Joules)	0.91	1.27	1.57	1.81	1.99	2.16	2.18

Figure 5: Fault-Handling Motion Estimation (FHME). Computation of a motion vector spatially along *j*-axis in a reference frame's search window S is shown. Proposed algo can adapt S based on type of motion.

- unpredictable environments with limited diagnostics
- technology scaling impact on reliability ^[2] _
- Reconfigurable Fabrics
 - enable novel adaptive recovery approaches
- "Beyond Redundancy" [3]
 - overcoming constraints of design-time approaches
- **Resource Escalation** ^[4]
 - enables a continuum of energy vs. quality tradeoffs

Research Contributions

Oblivious Fault-Detection: Intrinsic measurement of applications' health-metric using feedback loop \rightarrow Simplex operation for most of mission.

Desirable Fault-Isolation: System is kept online while concurrent error detection is performed using actual runtime inputs \rightarrow No need for test vectors. ^[5] Degraded Quality vs. Energy Consumption: Resources computing least priority functions can be reconfigured \rightarrow Throughput is application-regulated.

Figure 3: Fault Isolation (FI) and Recovery (FR) for 1D 8-point DCT. Here, PE_1 (active) and PE_2 (RS) are the faulty PEs which need to be identified and removed from the datapath. Initially, all resources (PEs) are deemed suspect (S). FaDReS starts by identifying a healthy RS (2nd iteration) and then proceeds to mark resources (PEs) as *healthy (H)* or *faulty (F)*.

	$\Delta PSNR_{max} = 5.09dB$	
P4	$\Delta PSNR_{avg} = 3.97 dB$	

Figure 6: Motion Estimation, adapting power vs. quality using resource predict algorithm. Here, lower bit-rate implies better performance.

Video Benchmark	Motion Activity	Baseline Bit-rate	FHME Bit-rate	No. of RS	Table 2: Number of RScreated using resource
Soccer	High	8.43	8.62	1	predict algorithm
Football	High	14.22	14.61	2	information while
Ice	Medium	6.29	6.38	4	maintaining bitrate
Suzie	Low	2.05	2.07	5	within 3%.

Condition	Average Bit- rate (kbps)	Avg. Increase in Bit-rate
Fault-free ME	3.75	0.0% (ref)
Faulty baseline ME	8.17	117.4%
FHME (single RS)	5.25	39.7%
FHME (pair of RSs)	4.68	24.6%

Table 3: Bit-rate of encoded bitstreams for **foreman** video sequence using various architectures.

Conclusions

Energy-Aware Fault-Handling

• A simplex configuration is shown to be sufficient for applications such as DCT when a health-metric such as PSNR is available

Figure 1: Health-Metric-based Fault-Handling Strategy, motivating example showing image reconstruction with (a) fully functional DCT module, PSNR=35.27dB (b) faulty PE in DCT module which computes DC-coefficient (*more significant to output quality than PEs computing AC coefficients*), PSNR=7.07dB.

Graceful Degradation during Diagnosis

• Degradation spanned a few frames, during which time a partial throughput is available, as an intrinsic provision of degraded mode

Priority-aware Fault Recovery

• Healthy resources are utilized for most-significant computations

References

- 1. X. Iturbe et. al., "R3TOS: A Novel Reliable Reconfigurable Real-Time Operating System for Highly Adaptive, Efficient, and Dependable Computing on FPGAs," IEEE Transactions on Computers, 2013.
- 2. Jörg Henkel et. al., "Reliable on-chip systems in the nano-era: lessons learnt and future trends," Design Automation Conference (DAC), 2013.
- 3. E.P. Kim and N.R. Shanbhag, "Soft N-Modular Redundancy," *IEEE Transactions on Computers*, 2012.
- 4. N. Imran, J. Lee and R. F. DeMara, "Fault Demotion Using Reconfigurable Slack (FaDReS)," IEEE Trans. Very Large Scale Integration Systems, 2013.
- 5. M.A. Wahlah and K. Goossens, "TeMNOT: A test methodology for the non-intrusive online testing of FPGA with hardwired network on chip," Microprocessors and Microsystems, 2013.
- 6. N. Imran, R. F. DeMara, J. Lee and J. Huang, "Self-Adapting Resource Escalation for Resilient Signal Processing Architectures," J. of Signal Processing Systems, 2013.
- 7. N. Imran, R. A. Ashraf, and R. F. DeMara, "Power and Quality-Aware Image Processing Soft-Resilience using Online Multi-Objective GAs," IJCVR, in-press, 2014.
- 8. N. Imran, R. A. Ashraf, J. Lee and R. F. DeMara, "Activity-Based Resource Allocation for Motion Estimation Engines," JCSC, under Review, Aug 2013.

Contact

Rizwan Ashraf

Department of Electrical Engineering and Computer Science University of Central Florida, Orlando, FL 32816 Email: rizwan.ashraf@knights.ucf.edu Website: cal.ucf.edu