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Agenda 
•  Involvement with PNNL with applications discussion 

•  Points of intersection with SEAK 
−  Evaluating, benchmarking and classifying embedded systems 
−  Compiler, synthesizers and optimization tools 
−  Modeling of application and system behavior 

•  Discuss lessons learned and recommendation w.r.t. above intersections 
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•  Wide Area Persistent Surveillance Poses Extreme Computation 
Challenges 
−  Processing 1.8 billion pixels, at 12 fps, generates on the order of 600 

Gb/s (around 6 petabytes of video data per day) 

•  Benchmark creation through progressively increasing processing 
pipeline depth and mission capacities  
−  Low SWaP processing that scales with Breadth (N objects), 

Complexity per object (M parameters), Depth (H hierarchy levels), 
and Data Rates (R) of higher level exploitation missions 

−  Characterize load (N, M, H, R) for processing pipeline stages, e.g. 
image pre-processing, segmentation, classification, tracking 

−  SWaP constraints of tactical exploitation systems (e.g. UAVs, DCGS-
A Intelligence Fusion Servers) for a range of mission capabilities, 
e.g., generating dots from pixels, tracks from dots, activity patterns 
from tracks, and threat analysis from patterns 

•  Other Challenge Domains Are Similarly Characterized 
−  Software Defined Radios  
−  Tactical SIGINT Payload  
−  Intelligence, Surveillance & Recon 
−  Distributed Networked, Adaptive  

Electronic Surveillance  

ARGUS-IS sensor  

New Sensor Payloads and Higher-Level Exploitation Mission 
Provide Benchmark and Analysis Candidates 

Persistics data  
processing pipeline 

−  Monitor Vessel Behavior 
−  RT Defense Against Networked Mobile and 

Spectrum Dynamic Emitters 
−  Continuous, Predictive Course of Action 

Analysis and Execution Monitoring 



Need New Paradigm to Harness Effective 
Code Parallelism 
• Amdahl’s Law prediction of limit of 
parallel processing speedup may 
yield low efficiency in HPC - 
concurrent execution of independent 
parallel applications may need more 
energy 

• Poor parallel application software 
architectures degrade performance 
well below Amdahl limits 
o Unbalanced processing load distributions 
o Productivity limits redesign in conventional, 

hand coded, developments 
o Balance interprocessor communication 

loading and data dependent wait times 
o Kernels depend on dataset scaling 

•  Reverse progress from ability to 
automatically and verifiably generate 
parallel and concurrent execution of 
military applications from graphical 
specifications 

Upper bound on parallel compute 
performance depends on exploiting ratio of 

serial to parallel code 

S = 1/(1-P)+(P/N) 

Metric – common comparison between best 
hand-coded and tool generated benchmarks  
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METHOD METHOD EXAMPLE CONCEPTUALIZATION 

Parallel Path/APIs and Language Constructs 

Distributed Objects 

Accelerated Objects 

Accelerated Functions 

Refine Abstract Machine (general purpose, data flow “port/connector”, 
…) 

Model Based & Knowledge Capture Frameworks 

Manual C/assembler/macro calls data partitioning 

MPI (variants), OpenMP, KAP, SE, Linda, PVM 

RT CORBA 

Agents, SCE 

Rippen, Autocode, Peakware, GEDAE, RTExpress, PGM, SPW, Khoros 

SADL, Meta-H, Talaris, SPE (Ptolemy simulation refinement not ADL but 
similar conceptualization) 

UML, SAGE, Mesa 

Direct machine level 

Compiler supported partitioning, source level abstraction supported by 
parallelizing compilers – not yet connected to model 
Distribute data to workers, component level abstraction over mountain 
climber 

Reduce runtime component brokering, distribute workers to data 

Distribute control, graphical functional flow graph 

Architecture definition language 

Generate SW from more abstract model level, UML can generate 
component IDLs & model application compliant with OMG 

Commercial graphical 
languages e.g. 

Autocode, GEDAE, 
PGM DataFlow Machine Exec 

(MCEXEC, RT Linux, 
VxWorks, …) 

DataFlow machine API 
(MCAP, VX/MP …) 

Navy graphical 
languages e.g. ACOS, 

ECOS, SPE 

Other modular graphical tools e.g,,Peakware, 
eArchitect 

Karp and Miller Data Flow Paradigm 

Ptolemy sim 

UML 
(reusable graphical specs) 

State space simulators 
e.g. Rose RT, Rhapsody, Murθ, IAR, …) 

Source level 
parallelizing support 
(OpenMP, KAP, MPI 
variants, Linda, …) 

Interface 
Repository 

 

Interface 
Repository 

PAS 

Matlab enhancers 
(RTExpress, Rippen, …) 

Matlab, 
Mathematica 

Proxy object 

API Adapter 

Backbone ORB (IIOP) 

Client 

(vectorizing) compilers with 
synch and comm primitives e.g. 
VAST, ZPL, High-performance 
FORTRAN, Data Parallel C, … 

Dynamic 
Invocation 

Client 
IDL 

Stubs 

Static 
Skeletons 

Dynamic 
Skeleton 

Invocation 

XIPL, VSIPL, SAL, SPE, HP,SGI, MPI CH, 
Cray/Paragon Library… 
Object Implementation Workers 

Controller 

Descriptions 

Production 

Operations 

Management 

SCE Component SCE Core 

Static Models Static Models 

Behavioral Models To MCOS 

Object 
Adapter 

Prototype 
software or 

custom 
simulation 

Map 
abstract 
calls to 

DataFlow 
machine 

DataFlow 
Machine API 

Several steps from 
ACL to MCOS 

Rippen 

VHDL 

Other 
ORBs 

MCOS 
ORB 

Include 

To Hardware 

Methods to Conceptualize/Apply High Performance Data Flow Applications 

Just wrote this lowest 
level code and proud of it 

MCOS/ORB Interface 

FormalSpecification 
(reusable/composable/verifiable 

specs) 

ADLs 
e.g. SADL, Meta-H, UML-

RT, … 

* Conceptualization outliers/combos e.g. ZPL (accelerated arrays) , BlueSpec (accelerated functions and objects), Matlab (variant of data flow) “yellow grouping”, … 

Cite: J. Smith and D. Kaeli, "Model-
Based Parallel Programming with 
Profile-Guided Application 
Optimization", Proceedings of 4th 
Annual Workshop HPEC Workshop, 
Sept 
2000,pp 85-86, Viewgraphs and Poster 



Toolchain based Recommendations 

• Model generated specifications 
and partial code 

• Peta-op computers with 
thousands of threads with 
manual code generation, 
verification, configuration and 
load balancing 

• Tools proven for parallel 
computing but no longer 
supported to extend to multi-core 
or cloud environment 

• Highly parallel computers, e.g. 
Tilera, with manually constructed 
parallelization methods e.g. MPI 

• Emergence of automatic 
parallelization frameworks 
distributing common operations 
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• Functionality captured in graphical 
spec to support practical design 
optimization - Help with how to 
evaluate new applications/ algorithms 
differently 
o Rapid partitioning, configuration and evaluation 

of model driven code generation 
o Design iteration to near Amdahl performance 

limitations   
o Support modern RAASP-like program (metrics, 

support, benchmarks)  
 

• HP inter and intra kernel interface/
comm mechanism spanning vendor 
approaches 

• General use, improved {pre}compiler 
technology (e.g. directed profile-guided 
optimization, adaptive compilers, etc.) 

Current Recommendations 
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Processing Flow Hasn’t Changed for EW, 
SIGINT & Comms 
•  High-rate sensors outputting multi-gigabyte data streams 

−  Improvements in sensors is constantly increasing the volume of data 

•  Flexibility provided by digital processing is pushing A/D closer to the 
sensor 

•  Very high performance, extremely low-latency front-end pre-processing is 
performed to process the raw data and extract the signal/information of 
interest  
−  Processing typically requires each data sample to be processed 

•  Once signal or information of interest is extracted microprocessor 
performs further lower-rate processing 

Sensor A/D Pre-
processor 

Post 
Processor 

Antenna, 
Focal Plane 

Analog Very High 
Datarate 

High – 
medium 
Datarate 

Linear, 
Complex 

ASIC, 
FPGA 
GPU 

Microprocessor 

Receive chain shown, transmit 
is same but in reverse 
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Current and Projected Digital Processing 
Architecture Challenges 

Control  Logic 

Pa
ck

et
iz

er
 

D
et

ec
tio

n 

Pre-processor FPGA  

In
te

rf
ac

e 
A

da
pt

er
 

Fi
lte

r/ 
D

ec
im

at
io

n 
Local Clock/Synch 

Pa
ra

m
et

er
 

Es
tim

at
io

n 

Se
ns

or
 

(A
nt

en
na

, F
oc

al
 

Pl
an

e,
e 

tc
) 

U
se

r I
nt

er
fa

ce
 

Sy
st

em
 S

of
tw

ar
e 

A/D 

D/A 

Memory 
 

Interface 

DF/Geo 
Processing 

GPU 
R

F 
C

on
ve

rt
er

s 

1)  Improved digital linearity 
compensation to improve system 
dynamic range  

3)  Improved throughput is needed 
for DF/geolocation implementations 
(ideally, DF or Geo in every PDW)  

4)  Reduced latency of channelized 
signals filter/decimation capability 
for a wide range of  applications 

5)  I/O limitations between 
processing blocks are bottleneck 
driving partitioning in many 
applications  - need low latency 

6)  Improved detection/parameter 
estimation algorithms that are able 
to better utilize subspace 
characteristics   

2)  Improved low latency IO 
bandwidth to accommodate next 
generation devices 

7) Efficient floating point resources 
for some applications 



What are SEAK challenges  

•  Non-reliable computations  
−  Map to near-threshold operating 

regions  
−  Fabrication issues 

•  Small reliable LWCs 
•  Need faster solution than 

end-end simulations at 
transistor/gate/module 
level 

•  Need to correlate high-
level state with gate-level 
state 

•  Net Count = 100,000 
•  Depth = 1,024 
•  Comprehensive coverage: 
−  Single faults → 100,000 * 

1,024 = ~100M simulations 
•  Each simulation runs for ~3 * 

1,024 = 3K cycles 
•  Each cycle is ~100,000 LUT ops 
•  Each LUT op is ~10 processor 

instructions 
•  → Need 100M * 3K * 100K * 10 

= 3*10^(17) instructions 
•  One computer has ~100,000 

MIPS 
•  → ~35 days of running time 
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Recommendations 

•  Inject faults anywhere at any level 
−  Need high-level simulator capable of injecting and simulating 

effects of (multiple) probabilistic faults at low level 
•  Simulate low level effects of faults given models of low-level 

gates/transistors where a fault could be injected  
−  Only need to run a gate level simulation cycle when we want to 

introduce a fault.   
•  All the other cycles in a simulation can be run at RTL (or BSV) 

•  Correlate high-level state with gate-level state to 
realistically debug 
−  Run bsim instead of RTL by interrupting the BlueSpec simulator to 

compute and insert a fault.   
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Backup 
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RASSP Goals and Process 

Technology base 
development 
•  Tools 
•  Next generation 

architectures 

Primary development 
•  System 

development, 
integration and 
demo designs 

Benchmarks 
 
 
 
 

Educate/Facilitate 
•  Tech transition 

User Community               

•  Reduce cost and time from concept to development and maintenance 
•  Main technological currency 

New tech 

Tech needs 

Process 

Metrics 

Problems/ 
metrics User  

feedback 
Process 

User  
feedback 

Integrated 
process 



Broad Potential: Productivity, Performance, Security 

Improved 
Cost 

High-level languages & automatic parallelization 
aid targeting parallel platforms, but do not 
improve debugging of parallel programs. 

Need to speed parallel system 
debugging & maintenance, not 
just development 

Scaling  
Performance 
with # cores 

Programmers today avoid parallelism 
opportunities to simplify debugging. 
Unsurprising with debugging for M instruction 
streams ≥ M times difficulty.* 

Need to unleash parallel 
opportunities without 
increased cost of bugs. 

Security 

Most vulnerabilities due to bugs. Isolating & 
repairing bugs is a central element of security. 
Parallel bugs most difficult & rapidly expanding. 

Need improvement just to 
keep up; leap has potential for 
large impact. 

Online defense techniques limited by need to be 
low impact to applications & systems 

Need full instrumentation & 
control, invisible to 
applications for security leap 

As number of cores explode & programming tools mature, debugging 
tractability becomes the bottleneck to realizing gains from parallel platforms; 
& low-impact instrumentation & control is a potential key enabler for security. 

* Openshaw and Turton, High Performance and  
   the Art of Parallel Programming. 

BAE SYSTEMS Advanced Information Technologies 
PROPRIETARY ©2009 BAE Systems. 
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Current Debugging Approaches Provide Little 
Support  - Especially for Parallel and Optimized 
Codes 

Debugging Parallel Code Debugging Optimized Code 
Require serialization prior to 
debugging 

gdb Turn off optimizations 
when debugging 

gdb, Microsoft, 
Borland, others 

Execute single thread until it 
blocks, then switch threads 

MS Research’s CHESS Debugger “hides” 
transforms and provides 
transparency 

Zellweger PhD 
dissertation, 1983   

Replace thread model with 
deterministic concurrency 
model 

George Mason U’s MM 
concurrency test and 
debug library 

Visualize compiler 
transforms performed 

Convex Computer, 
1992 

Focus on data sharing faults Intel Go-Parallel Debug optimized pseudo-
code not original source 

IBM mods to gdb 

Programmers have little to work with 

Very old results 
Still in the lab 

Piecemeal solutions 

Poor debugging support will continue to be a 
major drain on programmer productivity 
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Why DARPA? Business Unlikely to Solve  
Due to Business Economics; Large DoD Payoff 

Debugging economics: business less 
sensitive to high debug costs 

Open source tools: little to no 
investment by business 

Debug costs per revenue dollar low for 
mass market commercial software 
                          vs. 
DoD measures acquisition cost/product 
so debug costs amortize at high rate 
 
                     Also 
DoD systems larger, more complex 
 
DoD mission critical systems have to be 
more fully debugged 
•   Most commercial software can afford to 
   have users be beta testers 

Former development tools companies 
either subsumed or gone: Borland, 
Corel, Symantec, Rational 
 
No venture investors will touch a 
proposed new tools venture: little or 
no expected return on investment. 
 
Developers expect to get tools for free 
(e.g. Eclipse) 


