
DoD-Focused Benchmarks/Metrics, Toolchain and Debug
Recommendations

for Workshop on Suite of Embedded Applications and Kernels
Jeffrey Smith, PhD
1 June 2014

2

Agenda
•  Involvement with PNNL with applications discussion

•  Points of intersection with SEAK
−  Evaluating, benchmarking and classifying embedded systems
−  Compiler, synthesizers and optimization tools
−  Modeling of application and system behavior

•  Discuss lessons learned and recommendation w.r.t. above intersections

3

•  Wide Area Persistent Surveillance Poses Extreme Computation
Challenges
−  Processing 1.8 billion pixels, at 12 fps, generates on the order of 600

Gb/s (around 6 petabytes of video data per day)

•  Benchmark creation through progressively increasing processing
pipeline depth and mission capacities
−  Low SWaP processing that scales with Breadth (N objects),

Complexity per object (M parameters), Depth (H hierarchy levels),
and Data Rates (R) of higher level exploitation missions

−  Characterize load (N, M, H, R) for processing pipeline stages, e.g.
image pre-processing, segmentation, classification, tracking

−  SWaP constraints of tactical exploitation systems (e.g. UAVs, DCGS-
A Intelligence Fusion Servers) for a range of mission capabilities,
e.g., generating dots from pixels, tracks from dots, activity patterns
from tracks, and threat analysis from patterns

•  Other Challenge Domains Are Similarly Characterized
−  Software Defined Radios
−  Tactical SIGINT Payload
−  Intelligence, Surveillance & Recon
−  Distributed Networked, Adaptive

Electronic Surveillance

ARGUS-IS sensor

New Sensor Payloads and Higher-Level Exploitation Mission
Provide Benchmark and Analysis Candidates

Persistics data
processing pipeline

−  Monitor Vessel Behavior
−  RT Defense Against Networked Mobile and

Spectrum Dynamic Emitters
−  Continuous, Predictive Course of Action

Analysis and Execution Monitoring

Need New Paradigm to Harness Effective
Code Parallelism
• Amdahl’s Law prediction of limit of
parallel processing speedup may
yield low efficiency in HPC -
concurrent execution of independent
parallel applications may need more
energy

• Poor parallel application software
architectures degrade performance
well below Amdahl limits
o Unbalanced processing load distributions
o Productivity limits redesign in conventional,

hand coded, developments
o Balance interprocessor communication

loading and data dependent wait times
o Kernels depend on dataset scaling

•  Reverse progress from ability to
automatically and verifiably generate
parallel and concurrent execution of
military applications from graphical
specifications

Upper bound on parallel compute
performance depends on exploiting ratio of

serial to parallel code

S = 1/(1-P)+(P/N)

Metric – common comparison between best
hand-coded and tool generated benchmarks

5

Mountain Climber 1

2

3

4

5

6

7

METHOD METHOD EXAMPLE CONCEPTUALIZATION

Parallel Path/APIs and Language Constructs

Distributed Objects

Accelerated Objects

Accelerated Functions

Refine Abstract Machine (general purpose, data flow “port/connector”,
…)

Model Based & Knowledge Capture Frameworks

Manual C/assembler/macro calls data partitioning

MPI (variants), OpenMP, KAP, SE, Linda, PVM

RT CORBA

Agents, SCE

Rippen, Autocode, Peakware, GEDAE, RTExpress, PGM, SPW, Khoros

SADL, Meta-H, Talaris, SPE (Ptolemy simulation refinement not ADL but
similar conceptualization)

UML, SAGE, Mesa

Direct machine level

Compiler supported partitioning, source level abstraction supported by
parallelizing compilers – not yet connected to model
Distribute data to workers, component level abstraction over mountain
climber

Reduce runtime component brokering, distribute workers to data

Distribute control, graphical functional flow graph

Architecture definition language

Generate SW from more abstract model level, UML can generate
component IDLs & model application compliant with OMG

Commercial graphical
languages e.g.

Autocode, GEDAE,
PGM DataFlow Machine Exec

(MCEXEC, RT Linux,
VxWorks, …)

DataFlow machine API
(MCAP, VX/MP …)

Navy graphical
languages e.g. ACOS,

ECOS, SPE

Other modular graphical tools e.g,,Peakware,
eArchitect

Karp and Miller Data Flow Paradigm

Ptolemy sim

UML
(reusable graphical specs)

State space simulators
e.g. Rose RT, Rhapsody, Murθ, IAR, …)

Source level
parallelizing support
(OpenMP, KAP, MPI
variants, Linda, …)

Interface
Repository

Interface
Repository

PAS

Matlab enhancers
(RTExpress, Rippen, …)

Matlab,
Mathematica

Proxy object

API Adapter

Backbone ORB (IIOP)

Client

(vectorizing) compilers with
synch and comm primitives e.g.
VAST, ZPL, High-performance
FORTRAN, Data Parallel C, …

Dynamic
Invocation

Client
IDL

Stubs

Static
Skeletons

Dynamic
Skeleton

Invocation

XIPL, VSIPL, SAL, SPE, HP,SGI, MPI CH,
Cray/Paragon Library…
Object Implementation Workers

Controller

Descriptions

Production

Operations

Management

SCE Component SCE Core

Static Models Static Models

Behavioral Models To MCOS

Object
Adapter

Prototype
software or

custom
simulation

Map
abstract
calls to

DataFlow
machine

DataFlow
Machine API

Several steps from
ACL to MCOS

Rippen

VHDL

Other
ORBs

MCOS
ORB

Include

To Hardware

Methods to Conceptualize/Apply High Performance Data Flow Applications

Just wrote this lowest
level code and proud of it

MCOS/ORB Interface

FormalSpecification
(reusable/composable/verifiable

specs)

ADLs
e.g. SADL, Meta-H, UML-

RT, …

* Conceptualization outliers/combos e.g. ZPL (accelerated arrays) , BlueSpec (accelerated functions and objects), Matlab (variant of data flow) “yellow grouping”, …

Cite: J. Smith and D. Kaeli, "Model-
Based Parallel Programming with
Profile-Guided Application
Optimization", Proceedings of 4th
Annual Workshop HPEC Workshop,
Sept
2000,pp 85-86, Viewgraphs and Poster

Toolchain based Recommendations

• Model generated specifications
and partial code

• Peta-op computers with
thousands of threads with
manual code generation,
verification, configuration and
load balancing

• Tools proven for parallel
computing but no longer
supported to extend to multi-core
or cloud environment

• Highly parallel computers, e.g.
Tilera, with manually constructed
parallelization methods e.g. MPI

• Emergence of automatic
parallelization frameworks
distributing common operations

6

• Functionality captured in graphical
spec to support practical design
optimization - Help with how to
evaluate new applications/ algorithms
differently
o Rapid partitioning, configuration and evaluation

of model driven code generation
o Design iteration to near Amdahl performance

limitations
o Support modern RAASP-like program (metrics,

support, benchmarks)

• HP inter and intra kernel interface/
comm mechanism spanning vendor
approaches

• General use, improved {pre}compiler
technology (e.g. directed profile-guided
optimization, adaptive compilers, etc.)

Current Recommendations

7

Processing Flow Hasn’t Changed for EW,
SIGINT & Comms
•  High-rate sensors outputting multi-gigabyte data streams

−  Improvements in sensors is constantly increasing the volume of data

•  Flexibility provided by digital processing is pushing A/D closer to the
sensor

•  Very high performance, extremely low-latency front-end pre-processing is
performed to process the raw data and extract the signal/information of
interest
−  Processing typically requires each data sample to be processed

•  Once signal or information of interest is extracted microprocessor
performs further lower-rate processing

Sensor A/D Pre-
processor

Post
Processor

Antenna,
Focal Plane

Analog Very High
Datarate

High –
medium
Datarate

Linear,
Complex

ASIC,
FPGA
GPU

Microprocessor

Receive chain shown, transmit
is same but in reverse

8

Current and Projected Digital Processing
Architecture Challenges

Control Logic

Pa
ck

et
iz

er

D
et

ec
tio

n

Pre-processor FPGA

In
te

rf
ac

e
A

da
pt

er

Fi
lte

r/
D

ec
im

at
io

n
Local Clock/Synch

Pa
ra

m
et

er

Es
tim

at
io

n

Se
ns

or

(A
nt

en
na

, F
oc

al

Pl
an

e,
e

tc
)

U
se

r I
nt

er
fa

ce

Sy
st

em
 S

of
tw

ar
e

A/D

D/A

Memory

Interface

DF/Geo
Processing

GPU
R

F
C

on
ve

rt
er

s

1) Improved digital linearity
compensation to improve system
dynamic range

3) Improved throughput is needed
for DF/geolocation implementations
(ideally, DF or Geo in every PDW)

4) Reduced latency of channelized
signals filter/decimation capability
for a wide range of applications

5) I/O limitations between
processing blocks are bottleneck
driving partitioning in many
applications - need low latency

6) Improved detection/parameter
estimation algorithms that are able
to better utilize subspace
characteristics

2) Improved low latency IO
bandwidth to accommodate next
generation devices

7) Efficient floating point resources
for some applications

What are SEAK challenges

•  Non-reliable computations
−  Map to near-threshold operating

regions
−  Fabrication issues

•  Small reliable LWCs
•  Need faster solution than

end-end simulations at
transistor/gate/module
level

•  Need to correlate high-
level state with gate-level
state

•  Net Count = 100,000
•  Depth = 1,024
•  Comprehensive coverage:
−  Single faults → 100,000 *

1,024 = ~100M simulations
•  Each simulation runs for ~3 *

1,024 = 3K cycles
•  Each cycle is ~100,000 LUT ops
•  Each LUT op is ~10 processor

instructions
•  → Need 100M * 3K * 100K * 10

= 3*10^(17) instructions
•  One computer has ~100,000

MIPS
•  → ~35 days of running time

10

Recommendations

•  Inject faults anywhere at any level
−  Need high-level simulator capable of injecting and simulating

effects of (multiple) probabilistic faults at low level
•  Simulate low level effects of faults given models of low-level

gates/transistors where a fault could be injected
−  Only need to run a gate level simulation cycle when we want to

introduce a fault.
•  All the other cycles in a simulation can be run at RTL (or BSV)

•  Correlate high-level state with gate-level state to
realistically debug
−  Run bsim instead of RTL by interrupting the BlueSpec simulator to

compute and insert a fault.

11

Backup

12

RASSP Goals and Process

Technology base
development
•  Tools
•  Next generation

architectures

Primary development
•  System

development,
integration and
demo designs

Benchmarks

Educate/Facilitate
•  Tech transition

User Community

•  Reduce cost and time from concept to development and maintenance
•  Main technological currency

New tech

Tech needs

Process

Metrics

Problems/
metrics User

feedback
Process

User
feedback

Integrated
process

Broad Potential: Productivity, Performance, Security

Improved
Cost

High-level languages & automatic parallelization
aid targeting parallel platforms, but do not
improve debugging of parallel programs.

Need to speed parallel system
debugging & maintenance, not
just development

Scaling
Performance
with # cores

Programmers today avoid parallelism
opportunities to simplify debugging.
Unsurprising with debugging for M instruction
streams ≥ M times difficulty.*

Need to unleash parallel
opportunities without
increased cost of bugs.

Security

Most vulnerabilities due to bugs. Isolating &
repairing bugs is a central element of security.
Parallel bugs most difficult & rapidly expanding.

Need improvement just to
keep up; leap has potential for
large impact.

Online defense techniques limited by need to be
low impact to applications & systems

Need full instrumentation &
control, invisible to
applications for security leap

As number of cores explode & programming tools mature, debugging
tractability becomes the bottleneck to realizing gains from parallel platforms;
& low-impact instrumentation & control is a potential key enabler for security.

* Openshaw and Turton, High Performance and
 the Art of Parallel Programming.

BAE SYSTEMS Advanced Information Technologies
PROPRIETARY ©2009 BAE Systems.

14

Current Debugging Approaches Provide Little
Support - Especially for Parallel and Optimized
Codes

Debugging Parallel Code Debugging Optimized Code
Require serialization prior to
debugging

gdb Turn off optimizations
when debugging

gdb, Microsoft,
Borland, others

Execute single thread until it
blocks, then switch threads

MS Research’s CHESS Debugger “hides”
transforms and provides
transparency

Zellweger PhD
dissertation, 1983

Replace thread model with
deterministic concurrency
model

George Mason U’s MM
concurrency test and
debug library

Visualize compiler
transforms performed

Convex Computer,
1992

Focus on data sharing faults Intel Go-Parallel Debug optimized pseudo-
code not original source

IBM mods to gdb

Programmers have little to work with

Very old results
Still in the lab

Piecemeal solutions

Poor debugging support will continue to be a
major drain on programmer productivity

15

Why DARPA? Business Unlikely to Solve
Due to Business Economics; Large DoD Payoff

Debugging economics: business less
sensitive to high debug costs

Open source tools: little to no
investment by business

Debug costs per revenue dollar low for
mass market commercial software
 vs.
DoD measures acquisition cost/product
so debug costs amortize at high rate

 Also
DoD systems larger, more complex

DoD mission critical systems have to be
more fully debugged
•  Most commercial software can afford to
 have users be beta testers

Former development tools companies
either subsumed or gone: Borland,
Corel, Symantec, Rational

No venture investors will touch a
proposed new tools venture: little or
no expected return on investment.

Developers expect to get tools for free
(e.g. Eclipse)

